Certificate of Appropriateness
Executive Summary
HEARING DATE: NOVEMBER 20, 2019

Record No.: 2013.0689COA
Project Address: 2 HENRY ADAMS STREET
Landmark: Landmark No. 283 – Dunning, Carrigan, & Hayden Company Building
Zoning: PDR-1-D (Production, Distribution & Repair–1–Design) Zoning District
45-X Height and Bulk District
Block/Lot: 3910/001 and 005
Project Sponsor: John Kevlin, Reuben, Junius & Rose, LLP
One Bush Street, Suite 600
San Francisco, CA 94104
Staff Contact: Monica Giacomucci - 415-575-8714
Monica.Giacomucci@sfgov.org

PROPERTY DESCRIPTION

2 HENRY ADAMS STREET is located on the west side of Henry Adams Street between Division and Alameda streets (Assessor’s Block 3910; Lots 001 and 005) in the Showplace Square neighborhood. The subject building is locally designated under Article 10 of the Planning Code as Landmark No. 283 – Dunning, Carrigan, & Hayden Company Building.

The four-story (with interior mezzanine), heavy-timber frame, American Commercial Style building was constructed in 1915 by Leo J. Devlin. The building is irregular in plan, with a clipped northwestern corner due to a former rail line that cut across that portion of the block. The building is clad in common-bond red brick, with decorative brick piers, spandrels, and cornices.

PROJECT DESCRIPTION

The proposed project includes restoration of historic storefronts on all five facades. The building’s existing historic wood perforated bulkheads will be repaired, and any bulkheads which have been replaced over time will be removed and replaced with perforated bulkheads to match the historic. Non-historic and heavily deteriorated windows will be restored, and a modern storefront system on the northeast corner of the building will be replaced. Existing non-historic box awnings will be removed and replaced with flat metal awnings. At the northwest corner, a new 945 square-foot, one-story, brick-clad utilities enclosure will be constructed. The 5,309 square foot undeveloped area at the northeast corner of the property will be hardscaped and converted to a plaza. Finally, as part of the project, approximately 49,364 square feet will be converted to office use.

COMPLIANCE WITH PLANNING CODE

Planning Code Development Standards.
The proposed project requires a Conditional Use Authorization, pursuant to Planning Code Sections 210.3B and 303, and an Office Allocation, pursuant to Planning Code Sections 321 and 322. The Planning Commission will review these cases at a separate hearing currently scheduled for December 5, 2019.

In order to proceed, a building permit from the Department of Building Inspection is required.

Applicable Preservation Standards.
The proposal overall, is appropriate for and consistent with the purposes of Article 10, meets the standards of Article 1006.6 of the Planning Code, and complies with the Secretary of the Interior’s Standards for Rehabilitation, in that:

- A new one-story enclosure will be constructed at the northwest corner of the property to house a transformer and to store waste receptacles;
- The new utilities enclosure will be clad with modern brick and will feature a planted wall facing a new hardscaped plaza;
- Historic perforated painted wood bulkheads will be repaired where existing and restored where missing;
- Non-historic and heavily deteriorated transom windows will be replaced with 4-pane true divided-lite wood windows;
- A modern storefront system on the northeast corner of the building will be replaced with a glazed storefront;
- Existing signage will be removed and replaced with new signage under a future permit;
- The proposal respects the character-defining features of the subject building;
- The architectural character of the subject building will be maintained and that replacement elements will not affect the building’s overall appearance;
- The integrity of distinctive stylistic features and examples of skilled craftsmanship that characterize the building shall be preserved; and,
- All new materials shall match the historic material in composition, design, color, texture, finish and other visual qualities and shall be based on accurate duplication of features.

The Department has determined that the proposed work will be in conformance with the requirements of Article 10 and the Secretary of Interior’s Standards for Rehabilitation. Proposed work will not damage or destroy distinguishing original qualities or character of the subject building. The overall proposal includes restoration of the exterior storefronts on all building facades and construction of a new utility enclosure and plaza. The new utility enclosure will be clad with contemporary bricks which are compatible with the existing historic brickwork on the landmark building in terms of scale and material but differentiated in terms of texture and color. The Department finds that the historic character of the building will be retained and preserved and will not result in the removal of historic fabric.

PUBLIC/NEIGHBORHOOD INPUT

The Department has not received public comment in opposition to or support of the proposed project.
ISSUES & OTHER CONSIDERATIONS

The Project also includes conversion of 49,364 square feet of existing industrial space (currently vacant) to office use, thus requiring an Office Allocation and Conditional Use Authorization from the Planning Commission.

CONDITIONS OF APPROVAL

1. That prior to issuance of the building permit, the project sponsor shall submit product cut sheets or material samples for the brick cladding material proposed for the utility enclosure for review and approval by Planning Department Preservation Staff.

2. That prior to issuance of the building permit, an on-site full-scale mock-up of the brick cladding material proposed for the utility enclosure will require review and approval by Planning Department Preservation Staff.

ENVIRONMENTAL REVIEW STATUS

The Project is exempt from the California Environmental Quality Act (“CEQA”) as a Class 1 categorical exemption.

BASIS FOR RECOMMENDATION

The Department recommends APPROVAL WITH CONDITIONS of the proposed project as it meets the provisions of Article 10 of the Planning Code regarding Major Alteration to a contributing resource in a Landmark District and the Secretary of the Interior Standards for Rehabilitation.

ATTACHMENTS

Draft Motion – Certificate of Appropriateness
Exhibit A – Conditions of Approval (as applicable)
Exhibit B – Plans and Renderings
Exhibit C – Environmental Determination
Exhibit D – Maps and Context Photos
Exhibit E – Project Sponsor Brief
Certificate of Appropriateness
Draft Motion
HEARING DATE: NOVEMBER 20, 2019

Record No.: 2013.0689COA
Project Address: 2 HENRY ADAMS STREET
Landmark: Landmark No. 283 – Dunning, Carrigan, & Hayden Company Building
Zoning: PDR-1-D (Production, Distribution & Repair–1–Design) Zoning District
45-X Height and Bulk District
Block/Lot: 3910/001
Project Sponsor: John Kevlin
Reuben, Junius & Rose, LLP
One Bush Street, Suite 600
San Francisco, CA 94104
Staff Contact: Monica Giacomucci - 415-575-8714
Monica.Giacomucci@sfgov.org

ADOPTING FINDINGS FOR A CERTIFICATE OF APPROPRIATENESS FOR MAJOR ALTERATIONS DETERMINED TO BE APPROPRIATE FOR AND CONSISTENT WITH THE PURPOSES OF ARTICLE 10 OF THE SAN FRANCISCO PLANNING CODE, AND TO MEET THE SECRETARY OF THE INTERIOR’S STANDARDS FOR REHABILITATION, FOR THE PROPERTY LOCATED ON LOTS 001 AND 005 IN ASSESSOR’S BLOCK 3910 IN A PDR-1-D (PRODUCTION, DISTRIBUTION & REPAIR – 1 – DESIGN) ZONING DISTRICT AND A 45-X HEIGHT AND BULK DISTRICT.

PREAMBLE

On April 30, 2019, John Kevlin of Reuben, Junius & Rose, LLP, (hereinafter “Project Sponsor”) filed Application No. 2013.0689COA (hereinafter “Application”) with the San Francisco Planning Department (hereinafter “Department”) for a Certificate of Appropriateness for an exterior restoration at a subject building located on Lots 001 and 005 in Assessor’s Block 3910, which is locally designated as Landmark No. 283 – Dunning, Carrigan, & Hayden Company Building in Article 10 of the San Francisco Planning Code.

The Project is exempt from the California Environmental Quality Act (“CEQA”) as a Class 1 categorical exemption. The Historic Preservation Commission (hereinafter “Commission”) has reviewed and concurs with said determination.

On November 20, 2019, the Commission conducted a duly noticed public hearing at a regularly scheduled meeting on Certificate of Appropriateness Application No. 2013.0689COA.

The Planning Department Commission Secretary is the custodian of records; the File for Record No. 2013.0689COA is located at 1650 Mission Street, Suite 400, San Francisco, California.

www.sfplanning.org
The Commission has heard and considered the testimony presented to it at the public hearing and has further considered written materials and oral testimony presented on behalf of the applicant, Department staff, and other interested parties.

MOVED, that the Commission hereby APPROVES WITH CONDITIONS the Certificate of Appropriateness, as requested in Application No. 2013.0689COA in conformance with the architectural plans dated July 12, 2019 and labeled Exhibit B based on the following findings:

FINDINGS
Having reviewed all the materials identified in the recitals above and having heard oral testimony and arguments, this Commission finds, concludes, and determines as follows:

1. The above recitals are accurate and also constitute findings of the Commission.

2. Project Description. The proposed project includes restoration of historic storefronts on all five facades. The building’s existing historic wood perforated bulkheads will be repaired, and any bulkheads which have been replaced over time will be removed and replaced with perforated bulkheads to match the historic. Non-historic and heavily deteriorated windows will be restored, and a modern storefront system on the northeast corner of the building will be replaced. Existing non-historic box awnings will be removed and replaced with flat metal awnings. At the northwest corner, a new 945 square-foot, one-story, brick-clad utilities enclosure will be constructed. The 5,309 square foot undeveloped area at the northeast corner of the property will be hardscaped and converted to a plaza. Finally, as part of the project, approximately 49,364 square feet will be converted to office use.

3. Property Description. 2 Henry Adams Street is located on the west side of Henry Adams Street between Division and Alameda streets (Assessor’s Block 3910; Lots 001 and 005) in the Showplace Square neighborhood. The subject building is locally designated under Article 10 of the Planning Code as Landmark No. 283 – Dunning, Carrigan, & Hayden Company Building. The four-story (with interior mezzanine), heavy timber frame, American Commercial Style building was constructed in 1915 by Leo J. Devlin. The building is irregular in plan, with a clipped northwestern corner due to a former rail line that cut across that portion of the block. The building is clad in common-bond red brick, with decorative brick piers, spandrels, and cornices.

4. Surrounding Properties and Neighborhood. The subject property is located in the Showplace Square area. This area of San Francisco is characterized by large, heavy-timber and steel-frame industrial buildings, many of which were historically used as headquarters for furniture retailers or distribution centers for furniture wholesalers.

Since the subject building occupies the entire block, there are no buildings immediately adjacent. Just west of the building on the opposite side of Vermont Street is the Dwight D. Eisenhower Highway (Interstate 80). To the north and south of the subject block, buildings dating from the
1960s and 1990s house design firms and retailers. The One Henry Adams Apartments, a mixed-use development, occupies the entire block east of the subject property.

5. **Public Outreach and Comments.** The Department has not received public correspondence expressing opposition to or support of the project to date.

6. **Planning Code Compliance.** The Commission has determined that the proposed work is compatible with the exterior character-defining features of the subject property and meets the requirements of Article 10 of the Planning Code in the following manner:

 A. **Article 10 of the Planning Code.** Pursuant to Section 1006.6 of the Planning Code, the proposed alteration shall be consistent with and appropriate for the effectuation of the purposes of this Article 10.

 The proposed project is consistent with Article 10 of the Planning Code.

 B. **Secretary of the Interior’s Standards.** Pursuant to Section 1006.6(b) of the Planning Code, the proposed work shall comply with the Secretary of the Interior’s Standards for the Treatment of Historic Properties for significant and contributory buildings, as well as any applicable guidelines, local interpretations, bulletins, or other policies. Rehabilitation is the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features that convey its historical, cultural, or architectural values. The Rehabilitation Standards provide, in relevant part(s):

 (1) **Standard 1:** A property will be used as it was historically or be given a new use that requires minimal change to its distinctive materials, features, spaces and spatial relationships.

 The property will retain its historic use as a merchandise wholesale building on its first three floors. Part of the fourth floor is proposed for conversion to office use. The Department finds that the conversion to office use at this location will have a minimal impact to the building’s distinctive features.

 (2) **Standard 2:** The historic character of a property will be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

 The proposal is to restore 34 of the building’s bulkheads to their original perforated appearance and to replace non-historic storefront windows and awnings throughout all five facades. Except in the case of extreme deterioration, no historic materials are proposed for removal. Where historic materials are deteriorated beyond repair, they will be replaced in-kind.

 (3) **Standard 3:** Each property will be recognized as a physical record of its time, place and use. Changes that create a false sense of historical development, such as adding conjectural features or elements from other historic properties, will not be undertaken.
The proposed restoration is based on physical evidence observed at the building's existing historic storefronts. At the northeast corner of the building, a non-historic entry will be replaced with a simple glass entry which is compatible with but differentiated from the existing storefronts. The proposed utilities enclosure will be clad with bricks which are differentiated from 2 Henry Adams' original brickwork. Material samples and a final on-site mockup of these bricks will be reviewed and approved by Planning Department Preservation Staff as a Condition of Approval prior to issuance of the building permit.

(4) **Standard 4:** Changes to a property that have acquired historic significance in their own right will be retained and preserved.

Not Applicable.

(5) **Standard 5:** Distinctive features, finishes, and construction techniques or examples of fine craftsmanship that characterize a property will be preserved.

The distinctive features and finishes of the building will be retained and preserved. Replacement bulkheads will match historic wood perforated bulkheads, and new wood true-divided lite transom windows will match the historic wood transom windows.

(6) **Standard 6:** Deteriorated historic features will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and where possible, materials. Replacement of missing features will be substantiated by documentary and physical evidence.

The proposal includes replacement of existing vertical board or solid wood bulkheads with painted perforated wood bulkheads. These new perforated bulkheads will be designed to match in-kind the 13 extant original bulkheads. Those 13 original bulkheads will be repaired where deteriorated. Likewise, some non-historic and heavily deteriorated transom windows will be replaced with four-pane wood true-divided lite transom windows based on physical evidence at the subject property. Any new bulkheads and transoms will match the originals in terms of design, color, texture, and finish, and they will be materially compatible with the existing character-defining features of the building.

(7) **Standard 7:** Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.

Not Applicable.

(8) **Standard 8:** Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

Not Applicable.
(9) **Standard 9**: New additions, exterior alterations, or related new construction will not destroy historic materials and features that characterize the building. The new work will be differentiated from the old and will be compatible with the historic materials, features, size, scale and proportion, and massing to protect the integrity of the property and its environment.

The proposed work will not destroy historic materials or features that characterize the building. The new utilities enclosure, which will be clad with modern brick, will be differentiated from the old in physical material properties and will be compatible in materials, features, size, scale, and finish. Although the proposed enclosure will obscure one of 12 storefront openings on the Division Street façade (and one of 53 on the entire building), it will have no further impact on visual perception of the historic resource.

(10) **Standard 10**: New additions and adjacent or related new construction will be undertaken in such a manner that, if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

The proposed work will not destroy historic materials or features that characterize the building. The new utilities enclosure will be offset approximately six inches from the historic resource. A cap will cover the six-inch opening between the two structures, and points of connection will be tied at mortar joints so as to avoid damaging the façade’s character-defining bricks. The new utilities enclosure could be removed in the future without impairment to the architectural integrity of the historic resource.

C. **Landmarks**. Article 10 of the Planning Code outlines specific findings for the Commission to consider when evaluating applications for alterations to Landmarks or within designated Historic Districts.

1. Pursuant to Section 1006.6(c) of the Planning Code, for applications pertaining to landmark sites, the proposed work shall preserve, enhance or restore, and shall not damage or destroy, the exterior architectural features of the landmark and, where specified in the designating ordinance pursuant to Section 1004(c), its major interior architectural features. The proposed work shall not adversely affect the special character or special historical, architectural or aesthetic interest or value of the landmark and its site, as viewed both in themselves and in their setting, nor of the historic district in applicable cases.

 The project is in conformance with Article 10, and as outlined in Appendix A, as the work shall not adversely affect the Landmark site.

2. Pursuant to Board of Supervisors Ordinance No. 011-19 designating the Dunham, Carrigan, & Hayden Company Building as Landmark under Article 10 of the Planning Code, the following exterior character-defining features shall be preserved or replaced in-kind as part of any building permit application:
(1) Generally rectangular plan and form;
 Not Applicable.

(2) Four story height;
 Not Applicable.

(3) Flat roof and skylights;
 Not Applicable.

(4) Red brick exterior cladding;
 Not Applicable.

(5) Facades organized into bays separated by slightly projecting square piers;
 Not Applicable.

(6) Regular grid of punched windows dominating all façades and story levels;
 Not Applicable.

(7) Ground story window assemblies including widows, transoms, and wood bulkheads;
 The project proposes to remove and replace non-historic transoms and wood bulkheads with new transom windows and perforated wood bulkheads to match original features extant on the subject building. The work is restorative in nature and meets the intent of the designating ordinance.

(8) Six-part wood sash windows with divided lights in each part;
 Not Applicable. While some transom windows are proposed for replacement, none of the building’s six-lite wood sash windows will be removed or replaced.

(9) Recessed entry vestibules at northeast and southeast corners of first story;
 Not Applicable. While the northeast recessed storefront is proposed for removal and replacement, neither its depth of recess or its entry vestibule will be altered as part of the proposed project.

(10) First story brick beltcourse with peaked details near corners of building;
 Not Applicable.

(11) Blonde brick beltcourses between upper story levels;
 Not Applicable.

(12) Cast concrete details at tops and bottoms of vertical piers between bays;
 Not Applicable.

(13) Flat roofline with stepped and peaked parapets near corners of building;
Not Applicable.

(14) Loading dock along east façade;
Not Applicable.

(15) Heavy timber framing,
Not Applicable.

7. **General Plan Compliance.** The proposed Certificate of Appropriateness is, on balance, consistent with the following Objectives and Policies of the General Plan:

URBAN DESIGN ELEMENT
THE URBAN DESIGN ELEMENT CONCERNS THE PHYSICAL CHARACTER AND ORDER OF THE CITY, AND THE RELATIONSHIP BETWEEN PEOPLE AND THEIR ENVIRONMENT.

OBJECTIVE 1:
EMPHASIS OF THE CHARACTERISTIC PATTERN WHICH GIVES TO THE CITY AND ITS NEIGHBORHOODS AN IMAGE, A SENSE OF PURPOSE, AND A MEANS OF ORIENTATION.

Policy 1.3
Recognize that buildings, when seen together, produce a total effect that characterizes the city and its districts.

OBJECTIVE 2:
CONSERVATION OF RESOURCES WHICH PROVIDE A SENSE OF NATURE, CONTINUITY WITH THE PAST, AND FREEDOM FROM OVERCROWDING.

Policy 2.4
Preserve notable landmarks and areas of historic, architectural or aesthetic value, and promote the preservation of other buildings and features that provide continuity with past development.

Policy 2.5
Use care in remodeling of older buildings, in order to enhance rather than weaken the original character of such buildings.

Policy 2.7
Recognize and protect outstanding and unique areas that contribute in an extraordinary degree to San Francisco’s visual form and character.

The goal of a Certificate of Appropriateness is to provide additional oversight for buildings and districts that are architecturally or culturally significant to the City in order to protect the qualities that are associated with that significance.
The proposed project qualifies for a Certificate of Appropriateness and therefore furthers these policies and objectives by maintaining and preserving the character-defining features of the subject property for the future enjoyment and education of San Francisco residents and visitors.

8. **Planning Code Section 101.1(b)** establishes eight priority-planning policies and requires review of permits for consistency with said policies. On balance, the project complies with said policies in that:

A) The existing neighborhood-serving retail uses will be preserved and enhanced and future opportunities for resident employment in and ownership of such businesses will be enhanced:

The proposed project will not have an impact on neighborhood serving retail uses. There are no existing neighborhood serving retail uses on the project site.

B) The existing housing and neighborhood character will be conserved and protected in order to preserve the cultural and economic diversity of our neighborhoods:

The proposed project will strengthen neighborhood character by respecting the character-defining features of the building in conformance with the Secretary of the Interior’s Standards.

C) The City’s supply of affordable housing will be preserved and enhanced:

The project will not affect the City’s affordable housing supply.

D) The commuter traffic will not impede MUNI transit service or overburden our streets or neighborhood parking:

The proposed project will not result in commuter traffic impeding MUNI transit service or overburdening the streets or neighborhood parking. It will provide sufficient off-street parking for the proposed units.

E) A diverse economic base will be maintained by protecting our industrial and service sectors from displacement due to commercial office development. And future opportunities for resident employment and ownership in these sectors will be enhanced:

The proposed project includes conversion of 49,364 square feet of industrial use to office use on the fifth floor. The building has been occupied by the San Francisco Design Center, and the first, second (mezzanine), and third floors are primarily occupied by interior design retailers and showrooms. The fourth and fifth floors are currently vacant. Office use at this location would be compatible with the existing retail tenants, would facilitate and fund ongoing stewardship of the historic resource, and would offer employment opportunities more readily than an industrial use or vacancy.

F) The City will achieve the greatest possible preparedness to protect against injury and loss of life in an earthquake.
All construction will be executed in compliance with all applicable construction and safety measures.

G) That landmark and historic buildings will be preserved:

The proposed project is in conformance with Article 10 of the Planning Code and the Secretary of the Interior’s Standards.

H) Parks and open space and their access to sunlight and vistas will be protected from development:

The proposed project will not impact the access to sunlight or vistas for the parks and open space.

9. For these reasons, the proposal overall, appears to meet the Secretary of the Interior’s Standards and the provisions of Article 10 of the Planning Code regarding Major Alterations.
DECISION

That based upon the Record, the submissions by the Applicant, the staff of the Department and other interested parties, the oral testimony presented to this Commission at the public hearings, and all other written materials submitted by all parties, the Commission hereby APPROVES WITH CONDITIONS a Certificate of Appropriateness for the subject property located at Lots 001 and 005 in Assessor’s Block 3910 for proposed work in conformance with the architectural submittal dated November 21, 2012 and labeled Exhibit B on file in the docket for Record No. 2013.0689COA.

APPEAL AND EFFECTIVE DATE OF MOTION: The Commission’s decision on a Certificate of Appropriateness shall be final unless appealed within thirty (30) days after the date of this Motion No. XXXXXXX. Any appeal shall be made to the Board of Appeals, unless the proposed project requires Board of Supervisors approval or is appealed to the Board of Supervisors as a conditional use, in which case any appeal shall be made to the Board of Supervisors (see Charter Section 4.135). For further information, please contact the Board of Appeals in person at 1650 Mission Street, (Room 304) or call (415) 575-6880.

Duration of this Certificate of Appropriateness: This Certificate of Appropriateness is issued pursuant to Article 10 of the Planning Code and is valid for a period of three (3) years from the effective date of approval by the Historic Preservation Commission. The authorization and right vested by virtue of this action shall be deemed void and canceled if, within 3 years of the date of this Motion, a site permit or building permit for the Project has not been secured by Project Sponsor.

THIS IS NOT A PERMIT TO COMMENCE ANY WORK OR CHANGE OF OCCUPANCY UNLESS NO BUILDING PERMIT IS REQUIRED. PERMITS FROM THE DEPARTMENT OF BUILDING INSPECTION (and any other appropriate agencies) MUST BE SECURED BEFORE WORK IS STARTED OR OCCUPANCY IS CHANGED.

I hereby certify that the Historical Preservation Commission ADOPTED the foregoing Motion on November 20, 2019.

Jonas P. Ionin
Commission Secretary

AYES:
NAYS:
ABSENT:
ADOPTED: November 20, 2019
EXHIBIT A

AUTHORIZATION UPDATE
This authorization is for a Certificate of Appropriateness to allow Major Alterations located at 2 Henry Adams Street (Assessor’s Block 3910 in Lots 001 and 005) pursuant to Planning Code Sections 1006.6 within the PDR-1-D District and a 45-X Height and Bulk District; in general conformance with plans, dated July 12, 2019, and stamped “EXHIBIT B” included in the docket for Record No. 2013.0689COA and subject to conditions of approval reviewed and approved by the Historic Preservation Commission on November 20, 2019 under Motion No. XXXX. This authorization and the conditions contained herein run with the property and not with a particular Project Sponsor, business, or operator.

PRINTING OF CONDITIONS OF APPROVAL ON PLANS
The conditions of approval under the 'Exhibit A' of this Historic Preservation Commission Motion No. XXXXXXX shall be reproduced on the Index Sheet of construction plans submitted with the site or building permit application for the Project. The Index Sheet of the construction plans shall reference to the Certificate of Appropriateness and any subsequent amendments or modifications.

SEVERABILITY
The Project shall comply with all applicable City codes and requirements. If any clause, sentence, section or any part of these conditions of approval is for any reason held to be invalid, such invalidity shall not affect or impair other remaining clauses, sentences, or sections of these conditions. This decision conveys no right to construct, or to receive a building permit. “Project Sponsor” shall include any subsequent responsible party.

CHANGES AND MODIFICATIONS
Changes to the approved plans may be approved administratively by the Zoning Administrator. Significant changes and modifications of conditions shall require Historic Preservation Commission approval of a new Certificate of Appropriateness. In instances when Planning Commission also reviews additional authorizations for the project, Planning Commission may make modifications to the Certificate of Appropriateness based on majority vote and not required to return to Historic Preservation Commission.

CONDITIONS OF APPROVAL
1. That prior to issuance of the building permit, the project sponsor shall submit product cut sheets or material samples for the brick cladding material proposed for the utility enclosure for review and approval by Planning Department Preservation Staff.

2. That prior to issuance of the building permit, an on-site full-scale mock-up of the brick cladding material proposed for the utility enclosure will require review and approval by Planning Department Preservation Staff.
CEQA Categorical Exemption Determination

PROPERTY INFORMATION/PROJECT DESCRIPTION

<table>
<thead>
<tr>
<th>Project Address</th>
<th>Block/Lot(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 HENRY ADAMS ST</td>
<td>3910001, 3910005, 3910006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Permit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013.0689E</td>
<td>201909111376</td>
</tr>
</tbody>
</table>

- **Addition/Alteration**
- **Demolition (requires HRE for Category B Building)**
- **New Construction**

Project description for Planning Department approval.

The project site (Block 3910, Lots 001, 005, 006) occupies the entire block bounded by Henry Adams Street, Division Street, Vermont Street, and Alameda Street, and is located in the Showplace Square/Potrero Hill Area Plan in the South of Market Neighborhood. The lot is occupied by a 57-foot tall (60 feet with parapet), five-story 305,700-gross-square-foot, industrial production, distribution, repair (PDR) building constructed in 1915, known as the Dunham, Carrigan & Hayden Building, a Landmark Building.

The proposed project would convert 49,000 square feet of PDR space (parcel 3910/001) on the 5th floor to office use, and create a new outdoor plaza at the northwest corner of the property (lots 005 and 006). The 5th floor would retain 15,000 square feet of PDR space. Depth of ground disturbance in the plaza area would range from 1 to 6.5 feet over 4,940 square feet and a volume of 212 cubic yards. The project would provide 40 Class 1 and 18 Class 2 bicycle parking spaces.

The proposed project would also include remodeling of the exterior and interior core, and of the shell of the building. No foundation work would be performed. The site is within the Production, Distribution & Repair Design ("PDR-1-D") Zoning District and 45-X Height and Bulk District. Change of Use required.

STEP 1: EXEMPTION CLASS

The project has been determined to be categorically exempt under the California Environmental Quality Act (CEQA).

- **Class 1 - Existing Facilities.** Interior and exterior alterations; additions under 10,000 sq. ft.

- **Class 3 - New Construction.** Up to three new single-family residences or six dwelling units in one building; commercial/office structures; utility extensions; change of use under 10,000 sq. ft. if principally permitted or with a CU.

- **Class 32 - In-Fill Development.** New Construction of seven or more units or additions greater than 10,000 sq. ft. and meets the conditions described below:
 1. The project is consistent with the applicable general plan designation and all applicable general plan policies as well as with applicable zoning designation and regulations.
 2. The proposed development occurs within city limits on a project site of no more than 5 acres substantially surrounded by urban uses.
 3. The project site has no value as habitat for endangered rare or threatened species.
 4. Approval of the project would not result in any significant effects relating to traffic, noise, air quality, or water quality.
 5. The site can be adequately served by all required utilities and public services.

FOR ENVIRONMENTAL PLANNING USE ONLY

- **Class ____**
STEP 2: CEQA IMPACTS
TO BE COMPLETED BY PROJECT PLANNER

| **Air Quality:** Would the project add new sensitive receptors (specifically, schools, day care facilities, hospitals, residential dwellings, and senior-care facilities within an Air Pollution Exposure Zone? Does the project have the potential to emit substantial pollutant concentrations (e.g., backup diesel generators, heavy industry, diesel trucks, etc.)? (refer to EP_ArcMap > CEQA Ccatex Determination Layers > Air Pollution Exposure Zone) |
| Hazardous Materials: If the project site is located on the Maher map or is suspected of containing hazardous materials (based on a previous use such as gas station, auto repair, dry cleaners, or heavy manufacturing, or a site with underground storage tanks): Would the project involve 50 cubic yards or more of soil disturbance - or a change of use from industrial to residential? |
| if the applicant presents documentation of enrollment in the San Francisco Department of Public Health (DPH) Maher program, a DPH waiver from the Maher program, or other documentation from Environmental Planning staff that hazardous material effects would be less than significant (refer to EP_ArcMap > Maher layer). |
| **Transportation:** Does the project involve a child care facility or school with 30 or more students, or a location 1,500 sq. ft. or greater? Does the project have the potential to adversely affect transit, pedestrian and/or bicycle safety (hazards) or the adequacy of nearby transit, pedestrian and/or bicycle facilities? |
| **Archeological Resources:** Would the project result in soil disturbance/modification greater than two (2) feet below grade in an archeological sensitive area or eight (8) feet in a non-archeological sensitive area? If yes, archeo review is required (refer to EP_ArcMap > CEQA Ccatex Determination Layers > Archeological Sensitive Area) |
| **Subdivision/Lot Line Adjustment:** Does the project site involve a subdivision or lot line adjustment on a lot with a slope average of 20% or more? (refer to EP_ArcMap > CEQA Ccatex Determination Layers > Topography). If yes, Environmental Planning must issue the exemption. |
| **Slope = or > 25%:** Does the project involve any of the following: (1) square footage expansion greater than 500 sq. ft. outside of the existing building footprint, (2) excavation of 50 cubic yards or more of soil, (3) new construction? (refer to EP_ArcMap > CEQA Ccatex Determination Layers > Topography) If box is checked, a geotechnical report is required and Environmental Planning must issue the exemption. |
| **Seismic: Landslide Zone:** Does the project involve any of the following: (1) square footage expansion greater than 500 sq. ft. outside of the existing building footprint, (2) excavation of 50 cubic yards or more of soil, (3) new construction? (refer to EP_ArcMap > CEQA Ccatex Determination Layers > Seismic Hazard Zones) If box is checked, a geotechnical report is required and Environmental Planning must issue the exemption. |
| **Seismic: Liquefaction Zone:** Does the project involve any of the following: (1) square footage expansion greater than 500 sq. ft. outside of the existing building footprint, (2) excavation of 50 cubic yards or more of soil, (3) new construction? (refer to EP_ArcMap > CEQA Ccatex Determination Layers > Seismic Hazard Zones) If box is checked, a geotechnical report will likely be required and Environmental Planning must issue the exemption. |

Comments and Planner Signature (optional): Diane Livia

PLEASE SEE ATTACHED
STEP 3: PROPERTY STATUS - HISTORIC RESOURCE
TO BE COMPLETED BY PROJECT PLANNER

PROPERTY IS ONE OF THE FOLLOWING: (refer to Property Information Map)

- Category A: Known Historical Resource. GO TO STEP 5.
- Category B: Potential Historical Resource (over 45 years of age). GO TO STEP 4.
- Category C: Not a Historical Resource or Not Age Eligible (under 45 years of age). GO TO STEP 6.

STEP 4: PROPOSED WORK CHECKLIST
TO BE COMPLETED BY PROJECT PLANNER

Check all that apply to the project.

1. Change of use and new construction. Tenant improvements not included.
2. Regular maintenance or repair to correct or repair deterioration, decay, or damage to building.
3. Window replacement that meets the Department’s Window Replacement Standards. Does not include storefront window alterations.
4. Garage work. A new opening that meets the Guidelines for Adding Garages and Curb Cuts, and/or replacement of a garage door in an existing opening that meets the Residential Design Guidelines.
5. Deck, terrace construction, or fences not visible from any immediately adjacent public right-of-way.
6. Mechanical equipment installation that is not visible from any immediately adjacent public right-of-way.
7. Dormer installation that meets the requirements for exemption from public notification under Zoning Administrator Bulletin No. 3: Dormer Windows.
8. Addition(s) that are not visible from any immediately adjacent public right-of-way for 150 feet in each direction; does not extend vertically beyond the floor level of the top story of the structure or is only a single story in height; does not have a footprint that is more than 50% larger than that of the original building; and does not cause the removal of architectural significant roofing features.

Note: Project Planner must check box below before proceeding.

- Project is not listed. GO TO STEP 5.
- Project does not conform to the scopes of work. GO TO STEP 5.
- Project involves four or more work descriptions. GO TO STEP 5.
- Project involves less than four work descriptions. GO TO STEP 6.

STEP 5: CEQA IMPACTS - ADVANCED HISTORICAL REVIEW
TO BE COMPLETED BY PROJECT PLANNER

Check all that apply to the project.

1. Project involves a known historical resource (CEQA Category A) as determined by Step 3 and conforms entirely to proposed work checklist in Step 4.
2. Interior alterations to publicly accessible spaces.
3. Window replacement of original/historic windows that are not “in-kind” but are consistent with existing historic character.
4. Façade/storefront alterations that do not remove, alter, or obscure character-defining features.
5. Raising the building in a manner that does not remove, alter, or obscure character-defining features.
6. Restoration based upon documented evidence of a building’s historic condition, such as historic photographs, plans, physical evidence, or similar buildings.
7. **Addition(s)**, including mechanical equipment that are minimally visible from a public right-of-way and meet the *Secretary of the Interior’s Standards for Rehabilitation*.

8. **Other work consistent** with the *Secretary of the Interior Standards for the Treatment of Historic Properties* (specify or add comments):

9. **Other work** that would not materially impair a historic district (specify or add comments):

 (Requires approval by Senior Preservation Planner/Preservation Coordinator)

10. **Reclassification of property status.** (Requires approval by Senior Preservation Planner/Preservation Coordinator)

 - Reclassify to Category A
 - Reclassify to Category C
 - a. Per HRER or PTR dated
 - b. Other (specify): Alterations categorically exempt due to COA review

 Note: If ANY box in STEP 5 above is checked, a Preservation Planner MUST sign below.

- Project can proceed with categorical exemption review. The project has been reviewed by the Preservation Planner and can proceed with categorical exemption review. **GO TO STEP 6.**

Comments (optional):
Certificate of Appropriateness review required for exterior alterations, including window and door replacement, bulkhead restoration, and addition for trash enclosure.

Preservation Planner Signature: Monica Giacomucci

STEP 6: CATEGORICAL EXEMPTION DETERMINATION
TO BE COMPLETED BY PROJECT PLANNER

- No further environmental review is required. The project is categorically exempt under CEQA. There are no unusual circumstances that would result in a reasonable possibility of a significant effect.

Project Approval Action:
Planning Commission Hearing

Signature: Diane Livia

Date: 10/01/2019

Once signed or stamped and dated, this document constitutes a categorical exemption pursuant to CEQA Guidelines and Chapter 31 of the Administrative Code.
In accordance with Chapter 31 of the San Francisco Administrative Code, an appeal of an exemption determination can only be filed within 30 days of the project receiving the approval action.
Please note that other approval actions may be required for the project. Please contact the assigned planner for these approvals.
Project meets the criteria for Class 32 exemption because the project consists of interior and exterior alterations and Change of Use over 10,000 sq. ft. Excavation of 212 cy is for landscaping only. No sensitive receptors added. None of the exceptions to categorical exemptions apply. The project would not contribute to significant cumulative effects. Noise: The project would use typical construction equipment that would be regulated by Article 29 of the Police Code (section 2907, Construction Equipment). No impact pile driving or nighttime construction is required. Construction vibration would not be anticipated to affect adjacent buildings. The proposed project would not generate sufficient vehicle trips to noticeably increase ambient noise levels, and the project’s fixed noise sources, such as heating, ventilation, and air conditioning systems, would be subject to noise limits in Article 29 of the Police Code (section 2909, Noise Limits). Air Quality: The proposed project’s construction would be subject to the Dust Control Ordinance (Article 22B of the Health Code). The proposed land uses are below the Bay Area Air Quality Management District’s construction and operational screening levels for requiring further quantitative criteria air pollutant analysis. The project site is located within an air pollutant exposure zone. Natural Habitat: The project site is paved and within a developed urban area. The project site has no significant riparian corridors, estuaries, marshes, wetlands, or any other potential wildlife habitat that might contain endangered, rare or threatened species. Thus the project site has no value as habitat for rare, threatened, or endangered species. The proposed project would be designed to incorporate water-efficient fixtures as required by Title 24 of the California Code of Regulations and the City’s Green Building Ordinance. The project’s water supply demand would constitute a negligible increase relative to the existing and projected water supply demand for the city as a whole and is accounted for in the SFPUC’s Urban Water Management Plan, which addresses water demand and supply through 2040. As such, sufficient water supplies are available to serve the proposed project in normal, dry, and multiple dry years, and the proposed project would not require or result in the relocation or construction of new or expanded water facilities the construction or relocation of which could cause significant environmental effects. Public Notice: A “Notification of Project Receiving Environmental Review” was mailed on 2/28/2014 to adjacent occupants and owners of buildings within 300 feet of the project site and the South of Market neighborhood group list.
STEP 7: MODIFICATION OF A CEQA EXEMPT PROJECT

TO BE COMPLETED BY PROJECT PLANNER

In accordance with Chapter 31 of the San Francisco Administrative Code, when a California Environmental Quality Act (CEQA) exempt project changes after the Approval Action and requires a subsequent approval, the Environmental Review Officer (or his or her designee) must determine whether the proposed change constitutes a substantial modification of that project. This checklist shall be used to determine whether the proposed changes to the approved project would constitute a "substantial modification" and, therefore, be subject to additional environmental review pursuant to CEQA.

PROPERTY INFORMATION/PROJECT DESCRIPTION

<table>
<thead>
<tr>
<th>Project Address (If different than front page)</th>
<th>Block/Lot(s) (If different than front page)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 HENRY ADAMS ST</td>
<td>3910/001 and 005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Previous Building Permit No.</th>
<th>New Building Permit No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013.0689</td>
<td>201909111376</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plans Dated</th>
<th>Previous Approval Action</th>
<th>New Approval Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planning Commission Hearing</td>
<td></td>
</tr>
</tbody>
</table>

Modified Project Description:

DETERMINATION IF PROJECT CONSTITUTES SUBSTANTIAL MODIFICATION

Compared to the approved project, would the modified project:

- [] Result in expansion of the building envelope, as defined in the Planning Code;
- [] Result in the change of use that would require public notice under Planning Code Sections 311 or 312;
- [] Result in demolition as defined under Planning Code Section 317 or 19005(f)?
- [] Is any information being presented that was not known and could not have been known at the time of the original determination, that shows the originally approved project may no longer qualify for the exemption?

If at least one of the above boxes is checked, further environmental review is required.

DETERMINATION OF NO SUBSTANTIAL MODIFICATION

- [] The proposed modification would not result in any of the above changes.

If this box is checked, the proposed modifications are categorically exempt under CEQA, in accordance with prior project approval and no additional environmental review is required. This determination shall be posted on the Planning Department website and office and mailed to the applicant, City approving entities, and anyone requesting written notice. In accordance with Chapter 31, Sec 31.08j of the San Francisco Administrative Code, an appeal of this determination can be filed within 10 days of posting of this determination.

Planner Name:
Date:
Certificate of Appropriateness
Case Number 2013.0689COA
2 Henry Adams Street
Block 3910 Lot 001 and 005
Sanborn Map*

*The Sanborn Maps in San Francisco have not been updated since 1998, and this map may not accurately reflect existing conditions.

Certificate of Appropriateness
Case Number 2013.0689COA
2 Henry Adams Street
Block 3910 Lot 001 and 005
Certificate of Appropriateness
Case Number 2013.0689COA
2 Henry Adams Street
Block 3910 Lot 001 and 005
NORTHWEST SIDE OF SUBJECT PROPERTY PRIOR TO WORK
Site Photo

Certificate of Appropriateness
Case Number 2013.0689COA
2 Henry Adams Street
Block 3910 Lot 001 and 005
Delivered Via Hand Delivery & E-Mail

President Aaron Jon Hyland and Commissioners
San Francisco Historic Preservation Commission
c/o Monica Giacomucci
San Francisco Planning Division
1650 Mission Street, Suite 400
San Francisco, CA 94103
Monica.Giacomucci@sfgov.org

Re: 2 Henry Adams Street
Planning Case No.: 2013.1593COA
Hearing Date: November 20, 2019
Our File No.: 10909.01

Dear President Hyland and Commissioners:

This office represents RREEF America REIT II Corp. YYYY ("Project Sponsor") owner of the property at 2 Henry Adams Street (the “Property”). The Property is improved with a historic 5-story brick and timber building, known as the Dunham, Carrigan & Hayden Building, Landmark Building No. 283.

Project Description

Project Sponsor proposes exterior renovation of the Landmark Building, creation of a new outdoor plaza area with kiosk at the northwest corner of the Property, and conversion on the 5th floor of 49,364 square feet of production, distribution, and repair (“PDR”) showroom to office use (the “Project”). Currently, all five floors of the Landmark Building are designated as showroom use. The Project would allow mixed-use, PDR and office, on the fifth floor with the first four floors remaining PDR use. Project Plans are attached as Exhibit A.

The Project proposes a renovation to the Landmark Building, making it safer and more useful to future tenants. The Project has been determined to meet the Secretary of the Interior’s Standards for the Treatment of Historic Properties, including the Guidelines for Rehabilitation. The Project calls for life safety upgrades and renovations to the exterior and interior core, and shell remodel. The renovation would be financed by the tenancies allowed under more flexible zoning controls. The proposed renovation includes:

- **Historic Façade Renovation.** Cosmetic and weather proofing repair of the Landmark Building, including repointing of bricks, new coping, and flashings.
• **Re-Roofing.** The entire building requires a new roof.

• **Bulkhead Conservation.** Repairing and/or replacing several bulkheads on the building, needing restoration.

• **Window Replacement.** Replacement of the non-historic windows and storefront with new windows to replicate that of the historic window materials and profiles.

• **Signage.** Building entries will have flat signage the same size as the existing signage and corner signage will be mounted to four major corners of the building. Blade signs are mounted adjacent to awnings on first floor, typically marking a tenant entry.

• **Parapet Signage.** Signage mounted to the parapet at the roof line on the west elevation will be added, following the historical precedent of parapet signage at the Property. See historic photograph attached as Exhibit B.

• **Elevator Upgrades.** The two existing passenger elevators will be modernized to increase speed and efficiency; the freight elevator will undergo full modernization.

Though the building has been maintained, it needs upgrading. These upgrades will result in real, significant improvements to the integrity of the Landmark Building and will provide greater protection of this historic resource. The cost of implementing these upgrades is extensive, and such work would not be feasible without the additional renovations and change of use proposed.

Community Benefits

In addition to upgrading the Property, the Project would provide a range of public benefits to the community, including:

• **Public Open Space.** Creating approximately 4,878 square feet of attractively landscaped, publicly-accessible open space in the form of an outdoor plaza at the northwest corner of the Property with a new retail kiosk.

• **Neighborhood Serving Retail.** The new kiosk in the outdoor plaza is intended to host a future quick-service coffee and snack vendor that will serve local residents and visitors.

• **Ground Floor Restaurant.** Base building accommodations for future ground floor restaurant adjacent to north entrance lobby, includes MEP stub-outs and kitchen shell space for future restaurant use that will serve local residents.

• **Substantial Streetscape Improvements.** Providing numerous streetscape improvements over approximately 1,051 linear feet along the entire block bounded by Henry Adams, Division, Vermont, and Alameda Streets, and planting new street trees. Proposed
streetscape improvements would create a more welcoming and safer environment for local residents.

- Increased Public Safety from Lighting. New exterior site and security lighting and architectural building façade lighting included in the Project will activate the sidewalks during the nighttime hours improving neighborhood safety.

Conclusion

The Project has been thoughtfully designed to ensure compatibility with the historic Landmark Building, and will provide numerous public benefits. The Project significantly improves the Landmark Building by renovating the exterior façade while modernizing its operation to ensure its use and maintenance in the future. For these reasons, we ask that the Commission grant a Certificate of Appropriateness for the Project. We look forward to presenting the Project to the Commission on November 20, 2019.

Thank you for your consideration.

Very truly yours,

REUBEN, JUNIUS & ROSE, LLP

[Signature]

John Kevlin

Enclosures:
Exhibit A – Project Plans
Exhibit B – Historic Photo of Building’s West Elevation

cc: Diane Matsuda, Vice President
Kate Black, Commissioner
Chris Foley, Commissioner
Richard S.E. Johns, Commissioner
Jonathan Pearlman, Commissioner
Lydia So, Commissioner
Sean Murphy, Client (via e-mail only sean@pacificdevelopment.com)
SAN FRANCISCO DESIGN CENTER
2 HENRY ADAMS STREET, SAN FRANCISCO, CA 94103

BUILDING IMPROVEMENTS

PROJECT DIRECTORY

BUILDING CODE INFORMATION

DRAWING LIST

CERTIFICATE OF FINAL COMPLETION AND OCCUPANCY

VICINITY MAP

AREA OF WORK

PROJECT LEGEND

G1.0.3
1. Not every item of existing work to be demolished is indicated on the drawings. demolition work

2. Unless otherwise indicated, demolished materials become contractor's property; remove from project site promptly & legally dispose of them. do not allow demolished materials to accumulate without disrupting the owner's use of the building or its operations. review demolition methods & provisions for building occupants.

3. Verify that utilities have been disconnected & capped. survey existing conditions & correlate with notices to owner of activities that will affect the owner's or tenants' operations.

4. Provide & maintain shoring, bracing & structural supports as required to preserve stability & unexpected or uncontrolled movement or collapse of construction being demolished. strengthen or add new supports when required during progress of selective demolition.

5. Maintain access & do not close or obstruct existing exits, walkways, corridors & other adjacent areas.

6. Where applicable, neatly cut openings and holes plumb, square, & true to dimensions required. do not cut or damage adjoinsing construction to remain.

7. Function for use indicated.

8. Items indicated to be removed & reused/reinstalled: clean & repair to functional condition.

9. Furniture, furnishings & equipment to remain. protect walls, ceiling, floors & other existing finishes work to remain. cover and protect exposed finishes of patched areas & extend finish restoration into remaining exposed areas.

10. Temporary exterior panels for required cutouts in building envelope in order to install new window or door assemblies. keep in existing condition.

11. Provide & maintain temporary barricades, warning signs, lights & other safety measures as required by codes & regulations to protect the public & personnel from injury & construction hazards.

12. Adequate time to be scheduled for installation of new doors & windows to accommodate entry & exit requirements.

13. Where unanticipated mechanical, electrical, or structural elements that conflict with intended use are encountered, notify architect & owner. owner will remove hazardous materials under a separate contract.

14. Provide & maintain temporary barricades, warning signs, lights & other safety measures as required by codes & regulations to protect the public & personnel from injury & construction hazards.

15. Provide & maintain temporary barricades, warning signs, lights & other safety measures as required by codes & regulations to protect the public & personnel from injury & construction hazards.

16. Do not disrupt the owner's use of the building or its operations. review demolition methods & provisions for building occupants.

17. Maintain access & do not close or obstruct existing exits, walkways, corridors & other adjacent areas.

18. Where applicable, neatly cut openings and holes plumb, square, & true to dimensions required. do not cut or damage adjoinsing construction to remain.

19. When unanticipated mechanical, electrical, or structural elements that conflict with intended use are encountered, notify architect & owner. owner will remove hazardous materials under a separate contract.

20. Where existing finishes, including wall coverings, wall bases & floor coverings are indicated for removal, remove residual adhesive & prepare substrate for new finishes as required.

21. Provide & maintain temporary barricades, warning signs, lights & other safety measures as required by codes & regulations to protect the public & personnel from injury & construction hazards.

22. Existing unused outlets, associated cables/wires, cable conduits, wire molds & power & communication conduits to be removed & restored as indicated.

23. Where applicable, neatly cut openings and holes plumb, square, & true to dimensions required. do not cut or damage adjoinsing construction to remain.

24. Existing unused outlets, associated cables/wires, cable conduits, wire molds & power & communication conduits to be removed & restored as indicated.

25. When unanticipated mechanical, electrical, or structural elements that conflict with intended use are encountered, notify architect & owner. owner will remove hazardous materials under a separate contract.

26. Where applicable, neatly cut openings and holes plumb, square, & true to dimensions required. do not cut or damage adjoinsing construction to remain.

27. Where applicable, neatly cut openings and holes plumb, square, & true to dimensions required. do not cut or damage adjoinsing construction to remain.

28. Where applicable, neatly cut openings and holes plumb, square, & true to dimensions required. do not cut or damage adjoinsing construction to remain.

29. Where applicable, neatly cut openings and holes plumb, square, & true to dimensions required. do not cut or damage adjoinsing construction to remain.
1. PATCH AND REPAIR EXISTING DAMAGE FIREPROOFING WORK AS REQUIRED TO MAINTAIN EXISTING FIRE-RATING
2. PRIOR TO CLOSING UP THE PARTITIONS, NOTIFY THE ARCHITECT A MINIMUM OF THREE BUSINESS DAYS FOR
3. COORDINATE LOCATIONS OF MECHANICAL, ELECTRICAL, TELEPHONE, LIGHTING, PLUMBING, SPRINKLERS AND
4. INSTALL PARTITIONS PARALLEL TO THE STRUCTURAL GRID OF THE BUILDING, UNLESS OTHERWISE NOTED.
5. WHERE NEW PARTITIONS MEET INTERIOR OR EXTERIOR MULLIONS (OR COLUMNS), INSTALL THE NEW PARTITION
6. NOTIFY THE ARCHITECT THREE BUSINESS DAYS IN ADVANCE BEFORE PARTITION LOCATIONS ARE MARKED ON THE
7. REVIEW OF ARCHITECTURAL ELEMENTS. THE ARCHITECT'S REVIEW IS IN ADDITION TO INSPECTIONS REQUIRED BY
8. REQUIRED CLEARANCES FOR INSTALLATION AND MAINTENANCE OF EQUIPMENT IS PROVIDED.
9. PATCH EXISTING SURFACES TO MATCH ADJACENT OR ADJOINING NEW SURFACES. PREP FOR LEVEL 4 FINISH.
10. WHERE LOCATIONS OF PARTITIONS, DOORS, TELEPHONE, POWER AND COMMUNICATIONS OUTLETS, SWITCHES AND
11. REFER TO BUILDING ELEVATIONS FOR LOCATIONS OF NEW STOREFRONT AND INFILL PANELS.
12. SEAL, GASKET AND WEATHERSTRIP JOINTS, PENETRATIONS AND OTHER OPENINGS IN THE BUILDING
13. SIMILAR ELEMENTS INDICATED ON THE DRAWINGS CONFLICT, COORDINATE THE LOCATIONS WITH THE ARCHITECT
14. PRIOR TO CLOSING UP THE PARTITIONS, NOTIFY THE ARCHITECT A MINIMUM OF THREE BUSINESS DAYS
15. PRIOR TO CLOSING UP THE PARTITIONS, NOTIFY THE ARCHITECT A MINIMUM OF THREE BUSINESS DAYS
16. SEAL, GASKET AND WEATHERSTRIP JOINTS, PENETRATIONS AND OTHER OPENINGS IN THE BUILDING
17. VERIFY THAT EXISTING ENTRANCE DOORS, STAIRWAYS, AND ELEVATORS LEADING TO THE WORK AREA
18. CUT AND FIT EXISTING CONSTRUCTION AS REQUIRED TO ACCOMMODATE NEW WORK. PATCH TO MATCH
19. PROVIDE FIRE EXTINGUISHERS IN CABINET OR MOUNTED ON BRACKETS WHERE INDICATED AND AS
20. INSTALL TEMPERED GLASS WITH MANUFACTURER'S SEAL LOCATED IN THE LOWER CORNER OF THE
21. WHERE SAFETY GLASS IS REQUIRED BY CODE, PROVIDE GLASS COMPLYING WITH ANSI Z97.1 OR AS
22. VERIFY THAT THERE IS A MINIMUM CLEAR WIDTH OF 44" IN AISLES LEADING TO REQUIRED CORRIDORS AND
23. PROVIDE A CLEAR HORIZONTAL DIMENSION OF 1'-6" MINIMUM FROM STRIKE FACE OF DOOR JAMB TO THE
24. VERIFY THAT EXISTING ENTRANCE DOORS, STAIRWAYS, AND ELEVATORS LEADING TO THE WORK AREA
25. REFER TO BUILDING ELEVATIONS FOR LOCATIONS OF NEW STOREFRONT AND INFILL PANELS.
1. Anchor and brace partitions per code and as detailed. Refer to typical partition details.
2. Dimensions indicated on floor plans are from face of finished surface to face of finished surface, unless otherwise noted.
3. Areas shaded "NIC" (not in contract) are excluded from the scope of work.
4. Where new partitions meet interior or exterior mullions (or columns), install the new partition.
5. Where the face of an existing partition or column meets flush with a new partition, remove the existing metal corner bead or casing before installing the new partition.
6. Notify the architect three business days in advance before partition locations are marked on the floor plan.
7. Where the face of an existing partition or column meets flush with a new partition, remove the existing metal corner bead or casing before installing the new partition.
8. Align new partition surfaces with existing adjacent or adjoining surfaces where indicated. Tape centered on mullions (or columns) and perpendicular to it, unless otherwise noted.
9. Prior to closing up the partitions, notify the architect a minimum of three business days for coordination of locations of mechanical, electrical, telephone, lighting, plumbing, sprinklers and similar elements indicated on the drawings, to ensure that required clearances for installation and maintenance of equipment is provided.
10. Where locations of partitions, doors, telephone, power and communications outlets, switches and similar elements indicated on the drawings conflict, coordinate the locations with the architect before concealing fireproofed members or assemblies.
11. Patch and repair existing damaged fireproofing work as required to maintain existing fire-rating.
12. Where wood blocking is required or indicated, provide fire retardant treated wood.
13. Coordinate locations of mechanical, electrical, telephone, lighting, plumbing, sprinklers and similar elements indicated on the drawings, to ensure that required clearances for installation and maintenance of equipment is provided.
14. Prior to closing up the partitions, notify the architect a minimum of three business days for coordination of locations of mechanical, electrical, telephone, lighting, plumbing, sprinklers and similar elements indicated on the drawings, to ensure that required clearances for installation and maintenance of equipment is provided.
4. Repair/Replace all damaged, bent, misaligned, or atypical grills & metal louvers to match building.
3. Repair all dry rot as required.
2. Repair/replace brick in kind as required.
1. Remove all (E) exterior fire alarm bells that are no longer in use, (E) wall mounted light fixtures, (E) speakers. Remove associated equipment and wiring for all items. Patch wall to match existing.
5. Remove all decorative and wire mesh glazing. Replace with building standard. See A9.2.3 for details.
7. Remove all atypical bulkheads and replace with building standard. See A9.2.3 for details.

LEGEND
A. As indicated on floor plan.
B. New work, painted, metal, trim, etc. (see plant for details).
C. New work, modified, framed, etc., painted, metal, trim, etc. (see plant for details).
D. New work, added, framed, etc., painted, metal, trim, etc. (see plant for details).
E. New work, installed, framed, etc., painted, metal, trim, etc. (see plant for details).
F. New work, structural, framed, etc., painted, metal, trim, etc. (see plant for details).
G. New work, structural, modified, etc., painted, metal, trim, etc. (see plant for details).
H. New work, structural, added, painted, metal, trim, etc. (see plant for details).
I. New work, structural, added, modified, painted, metal, trim, etc. (see plant for details).
J. New work, structural, added, modified, etc., painted, metal, trim, etc. (see plant for details).
NOT REQUIRED

1. ASSEMBLY RATING SHALL BE PER UL 2079, SYSTEM NUMBER UL BW-S-0002 OR EQUIVALENT UL TEST, FOR EITHER
2. MTL STUDS SHALL BE 3 1/2" MIN WIDTH, W/ 1 1/4" MIN FLANGES & 25 MIN GA, SPACED @ 24" OC MAX.
7. SEE HEAD-OF-WALL DETAIL OF SCHEDULED PTN; ITS FIRE RATING SHALL MATCH FIRE RATING OF WALL.
6. FIRE RATING OF JOINT SYSTEM SHALL MATCH FIRE RATING OF WALL.
5. FILL GAP AT BOT OF WALL W/ FIRESTOP SEALANT 5/8" MIN THICKNESS AS TESTED.
4. SEPARATION FROM TOP OF SLAB TO BOT OF WALL TESTED AT 3/4" MAX; 1/4" PREFERRED FOR ACOUS REASON.
3. GYP BD SHALL BE 5/8" MIN THICKNESS, TYPE X.
16" = 1'-0"
SAN FRANCISCO DESIGN CENTER
PROPOSED FACADE IMPROVEMENTS
EXISTING EXTERIOR PHOTOS

A HENRY ADAMS STREET
B HENRY ADAMS STREET
C HENRY ADAMS STREET
D VERMONT STREET
E VERMONT STREET
F VERMONT STREET
EXISTING EXTERIOR PHOTOS

G ALAMEDA STREET

H ALAMEDA STREET

I VERMONT STREET

J DIVISION STREET
1. Repoint 100% of brickwork on south parapet at west half of building repair displaced roof level brickwork on west facade at south corner parapet

2. Repair damaged brickwork at west facade at fire escape

3. Repair corrosion at window lintels

4. Repair parapet bracing

5. Repair parging on window sills and other horizontal ledges

6. Repoint mortar joints

7. Repaint parged areas of facade

8. Clean masonry

9. Repaint exposed metal components
EAST ELEVATION (HENRY ADAMS STREET)

EXISTING & DEMOLITION

NEW WORK
EAST ELEVATION (HENRY ADAMS STREET)

EXISTING & DEMOLITION

- REMOVE BUILDING SIGNAGE, TYP
- REMOVE FABRIC AWNINGS, TYP
- DEMOLISH STOREFRONT
- DEMOLISH WOOD EGRESS STAIR
- DEMOLISH EXISTING STAIRS & RAMP
- REMOVE BUILDING SIGNAGE, TYP
- REMOVE BUILDING LIGHTING EVERY THREE BAYS, TYP
- REPLACE ATYPICAL PANES TO MATCH HISTORIC, TYP
- REPAIR ALL BULKHEADS TO MATCH HISTORIC

NEW WORK

- NEW BUILDING SIGNAGE MTD TO SAME LOCATIONS, TYP
- NEW CONCRETE STAIR & GUARDRAIL
- NEW ENTRY STAIRS, RAMP, AND AWNING
- NEW C-CHANNEL AWNINGS & BLADE SIGNS, TYP
- NEW MODERN STOREFRONT
EXISTING & DEMOLITION

- DEMOLISH STOREFRONT
- REMOVE FABRIC AWNINGS, TYP

NEW WORK

- NEW MODERN STOREFRONT
- NEW HISTORIC STOREFRONT
- NEW BUILDING SIGNAGE
- NEW C-CHANNEL AWNINGS & BLADE SIGNS, TYP
- EXISTING PG&E DOORS & VAULTS TO REMAIN
- REPAIR ALL BULKHEADS TO MATCH HISTORIC

NEW BUILDING SIGNAGE MTD TO SAME LOCATIONS, TYP

REPLACE ATYPICAL PANES TO MATCH HISTORIC, TYP

NEW BUILDING LIGHTING EVERY THREE BAYS, TYP

MODERN GLAZING TO REMAIN
WEST ELEVATION (VERMONT STREET)

EXISTING & DEMOLITION

NEW WORK
WEST ELEVATION (VERMONT STREET)

EXISTING & DEMOLITION

- Demolish grates and atypical entrance condition

NEW WORK

- Replace atypical panes to match historic, typ
- New storefront to match historic

NEW BUILDING SIGNAGE

- New building lighting every three bays, typ
- New historic storefront

EXTERIOR ELEVATIONS
NORTHWEST ELEVATION (DIVISION STREET)

EXISTING & DEMOLITION

NEW WORK
NORTHWEST ELEVATION (DIVISION STREET)

EXISTING & DEMOLITION
- Demolish existing stairs & ramp
- Demolish existing assembly
- Demolish for new storefront
- Demolish non-conforming assembly

NEW WORK
- New blade sign, typ
- New concrete stair & guardrail
- Replace atypical panes to match historic, typ
- New building lighting every three bays, typ
- New building signage
- New storefront to match storefront
- New non-conforming assembly
NORTH ELEVATION (DIVISION STREET)

EXISTING & DEMOLITION

NEW WORK
NORTH ELEVATION (DIVISION STREET)

EXISTING & DEMOLITION

- REMOVE BUILDING SIGNAGE, TYP
- DEMOLISH FABRIC AWNING
- DEMOLISH FOR NEW STOREFRONT
- DEMOLISH EXISTING STAIRS & RAMP

NEW WORK

- NEW BUILDING SIGNAGE MTD TO SAME LOCATIONS, TYP
- NEW MODERN STOREFRONT
- NEW C-CHANNEL AWNINGS & BLADE SIGNS, TYP
- NEW CONCRETE STAIR, RAMP, & GUARDRAIL
PROPOSED DESIGN ELEMENTS

TYPICAL HISTORIC BULKHEAD

MODERN STOREFRONT

C-CHANNEL AWNING

BLADE SIGN
PROPOSED BUILDING SIGNAGE (DESIGN-BUILD)

2 HENRY ADAMS STREET | SAN FRANCISCO | CA

FACADE IMPROVEMENTS | 02.26.19

MAJOR TENANT/ BUILDING IDENTIFICATION SIGNAGE

1

TENANT IDENTIFICATION BLADE SIGNAGE

2

TENANT IDENTIFICATION METAL AND GLASS CANOPY

3

SIGNAGE KEY ELEVATION

GALVANIZED STEEL FRAME, WITH OBSCURED LED LIGHTING

METAL/ ACRYLIC MAIN BUILDING SIGN W/ BRANDING

BLACK PANEL WITH BACK-LIT LOGO

PAINTED GALV STEEL FRAME

GALV ANGLE, SECURED THROUGH MORTOR W/ ANCHOR TBD.

TENANT SIGNAGE

SIGN PROFILE

GLASS CANOPY

GALV STEEL C CHANNEL PAINTED BLACK

TYPE 1

TYPE 2

TYPE 3

TYPE 1

TYPE 2

TYPE 3
SAN FRANCISCO DESIGN CENTER
PROPOSED EXTERIOR IMPROVEMENTS
EXISTING EXTERIOR PHOTOS

2 HENRY ADAMS STREET | SAN FRANCISCO | CA

EXTERIOR IMPROVEMENTS | 02.26.19

HENRY ADAMS STREET

VERMONT STREET

A

B

C

D

E

F
PROPOSED PLAZA IMPROVEMENTS

2 HENRY ADAMS STREET | SAN FRANCISCO | CA

E | DRIFTERS STRUCTURE

F | DRIFTER BENCH

G | PLANTERS

H | CUSTOM DRIFTER SET

A | GREEN WALL

B | CITY STANDARD CONCRETE PAVING

C | CONCRETE PAVERS

D | METAL BAND IN PAVING
CITY STANDARD CONCRETE
COLOR: GREY STONE
BY DAVIS
ENTRY PAVING

2 HENRY ADAMS STREET | SAN FRANCISCO | CA

PIP CONCRETE
COLOR: COBBLESTONE
BY DAVIS
6" X 8" X 6" CONCRETE PAVERS
COLOR: FRENCH GREY
BY STEPSTONE

RAILROAD TRACK
12" X 18" CONCRETE PAVERS
COLOR: FRENCH GREY
BY STEPSTONE
3" X 18" CONCRETE PAVERS
COLOR: CHARCOAL
BY STEPSTONE
PLAZA PLANTERS

2 HENRY ADAMS STREET | SAN FRANCISCO | CA

EXTERIOR IMPROVEMENTS | 02.26.19

ORE PLANTER
WITH INTEGRATED LIGHT
COLOR: CHARCOAL GREY
EXISTING PLANTERS
QUANTITY: 16

TOURNESOL SITEWORKS
SIZE: 4" X 4"
COLOR: SHADOW
QUANTITY: 23

ORE PLANTER
SIZE: 4" X 4"
(CUSTOM)
GUARDRAILS

2 HENRY ADAMS STREET | SAN FRANCISCO | CA

GUARDRAIL TO MATCH ONE HENRY ADAMS

EXTERIOR IMPROVEMENTS | 02.26.19
CONCRETE WALL WITH BOARDFORM FINISH
COLOR: COBBLESTONE
BY DAVIS
CUSTOM DRIFTER STRUCTURE BY STREETLIFE
CUSTOM DRIFTER TABLE AND BENCHES BY STREETLIFE
ORE PLANTER
WITH INTEGRATED LIGHT
COLOR: CHARCOAL GREY
DELTA STAR UPLIGHT
COLOR: BRONZE

PLAZA LIGHTING
2 HENRY ADAMS STREET | SAN FRANCISCO | CA

EXTERIOR IMPROVEMENTS | 02.26.19
GREENWALL LIGHTING

GREENWALL UPLIGHT
TOURNESOL CWM MODULAR CONTAINER IRRIGATION

IRRIGATION SYSTEM AT DARK BLUE PLANTERS/TREE WELLS
EXISTING TRISTANIOPSIS LAURINA REMAIN
PLAZA TREES

2 HENRY ADAMS STREET | SAN FRANCISCO | CA

EXTERIOR IMPROVEMENTS | 02.26.19

Trees

Ginkgo biloba

Plaza Trees

Ginkgo Biloba
HENRY ADAMS & ALAMEDA STREET TREES IN PLANTERS

2 HENRY ADAMS STREET | SAN FRANCISCO | CA

LUMA APICULATA

DICHONDRA SPP.
LOPHOSIEMON CONFERTUS
Asparagus sprengeri
Asparagus meyeri
Davallia trichomanoides
Euonymus fortune ‘Emerald n Gold’
Ficus repens
Geranium cantabrigiense ‘biokovo’
Hedera helix
Liriope spp.
Muehlenbeckia complexa
Pachysandra terminalis
THE DUNHAM, CARRIGAN & HAYDEN BUILDING
Targeted Historic Structure Report

2 Henry Adams Street, San Francisco, California

Draft Report
May 23, 2019

Prepared for:
San Francisco Design Center
2 Henry Adams Street
Suite 400
San Francisco, CA 94103

Prepared by:
Wiss, Janney, Elstner Associates, Inc.
2000 Powell St., Ste 1650
Emeryville, CA 94608
510 428 2907
TABLE OF CONTENTS

Introduction .. 1
Data and Methodology ... 1
Site Investigation ... 1
Document Review ... 1
Qualifications .. 2
Significance and Integrity .. 2
 Summary ... 2
 Overall Significance ... 3
Significant Character Defining Features ... 4
 Exterior .. 4
 Interior .. 4
Assessment of Integrity ... 4
 Integrity of Location ... 4
 Integrity of Design ... 5
 Integrity of Setting ... 5
 Integrity of Materials and Workmanship ... 5
 Integrity of Feeling ... 5
 Integrity of Association .. 5
Building Description .. 5
 Exterior .. 7
 Interior .. 9
Condition Assessment ... 10
 Masonry Facade ... 10
 Fire Escapes ... 17
 Windows .. 18
 Roofing ... 21
 Structure .. 28
Recommendations for Treatment ... 36
Guidelines and Standards for Treatment ... 36
 Selecting the Appropriate Treatment Standards .. 36
Repair Recommendations ... 37
 Masonry Facade ... 37
 Fire Escapes ... 39
 Windows .. 39
 Roofing ... 41
 Structure .. 42
Project Progress .. 43
Appendix A: Proposed Project .. 44
 Project Summary .. 45
 Project Ability to Enhance Feasibility of Preservation .. 45
 Building System Upgrades ... 46
 Landmark Preservation .. 47
 Cosmetic and Building Enhancements ... 47
 Compliance with the Secretary of the Interior’s Standards 49
 Compatibility of Office Use with PDR Tenants ... 51
 Relocation Strategy for Displaced PDR Tenants ... 51
Impact of Proposed Office Use on Surrounding Community ... 51
Appendix B: Landmark Designation Report .. 52
INTRODUCTION

At the request of the City of San Francisco’s Department of City Planning (SFDP), Wiss, Janney, Elstner Associates, Inc. (WJE) has prepared this targeted Historic Structure Report for the Dunham, Carrigan & Hayden Building at 2 Henry Adams Street, San Francisco, California. Under Building Permit Application 201904228568, the project team plans to utilize the historic resource incentive under Planning Code Section 210.3B Office Uses in Landmark Buildings in the PDR-1-D and PDR-1-G Districts to convert 49,364 square feet of PDR space on the upper two floors to office use.

Data and Methodology

Site Investigation

- As part of WJE’s overall evaluation of the building envelope, Dan Eilbeck performed a preliminary survey of the brick masonry facades of the Dunham, Carrigan & Hayden Building. The survey was performed on June 12 and 13, 2017 from ground level using binoculars and from the exterior fire escapes on the north, west and south elevations. Portions of the interior with known water leakage were also surveyed.

- On June 15, 2017 Joe Bukovec, Leslie Scheppelmann and Sylvan Cambier performed a limited survey of the windows of the Dunham, Carrigan & Hayden Building. The survey was performed from the interior on levels four and five, and from the exterior fire escape on the south elevation. On that same date WJE also performed a visual survey of the roof.

- On August 9, 2017 Dan Eilbeck returned to the building to survey the structural elements, including the foundation and underfloor pier system, the interior wood timbers and framing, and the bracing system at the masonry parapets.

- On April 19, 2019 Alan Dreyfuss and Aaron Weiss documented publicly accessible interior spaces including the lobbies at the northeast and southwest corners, the ground floor concourse, and publicly accessible hallways at the second and third floor levels.

Document Review

The following documents were reviewed as part of the preparation of this report:

- *Draft Resolution to Initiate Article 10 Landmark Designation of 2 Henry Adams Street, Historically known as the Dunham, Carrigan & Hayden Building as Landmark No. XXX*, Jonas P. Ionin, Historic Preservation Commission Secretary, January 15, 2014.

- *Draft Resolution to Initiate Article 10 Landmark Designation of 2 Henry Adams Street, Historically known as the Dunham, Carrigan & Hayden Building as Landmark No. XXX*, Jonas P. Ionin, Historic Preservation Commission Secretary, March 5, 2014.

• **Article 10 Landmark Case Report, Initiation of Designation**, San Francisco Planning Department, March 5, 2014.

• **Ordinance designating 2 Henry Adams Street as Landmark under Article 10 of the San Francisco Planning Code**, Andrea Ruiz-Ésquiaí, Deputy City Attorney, City of San Francisco, February 25, 2014.

• **San Francisco Planning Code Section 210.3B**.

• Drawings titled **Showplace Square Structural Modifications**, Telesis Engineers, October 3, 1997.

• Drawings titled **San Francisco Design Center - Building & Site Improvements Reference Set**, RMW Architecture & Interiors, April 10, 2019.

Qualifications

This report is being compiled under the supervision of Alan Dreyfuss, AIA. Mr. Dreyfuss has a Bachelor of Arts degree in Architecture from the University of California, Berkeley, is a licensed architect in California, and has over 30 years of experience evaluating, repairing and preserving historic buildings, meeting the Secretary of the Interior’s Standards professional qualification requirements for Historic Architecture.

SIGNIFICANCE AND INTEGRITY

Summary

The Dunham, Carrigan & Hayden Building is a five story, heavy timber and brick building that occupies the entire block bordered by Henry Adams, Alameda, Vermont and Division streets. It was constructed in 1915 as the corporate office and distribution center for the Dunham, Carrigan & Hayden Company, a wholesale steel and hardware importer and distributor in what has been characterized as the brick industrial design style. The building is located in the Showplace Square Heavy Timber and Steel Frame Brick Warehouse and Factory District (The Wholesale District), and now houses the San Francisco Design Center (SFDC). The area is designated a **PDR-I-D - Production, Distribution & Repair - 1-Design in a 45-X Height and Bulk District** by SFDP.

The building is generally in good condition, and has seen only minor alterations to the exterior since it was first constructed. The interior has been adapted primarily for furniture galleries, accessory and storage space, but retains its original character and open space as a warehouse, especially on the fourth and fifth floors. It retains a high degree of integrity, including the siting, spatial relationship, and design that define its historic character.
A Landmark Designation Report was prepared for the Historic Preservation Commission by Tim Kelley Consulting LLC (Appendix B). The report found that the Dunham, Carrigan & Hayden Building was significant for its association with events that have made a significant contribution to the broad patterns of history; and that it embodies distinctive characteristics of a type, period, or method of construction that represent a significant and distinguishable entity. SFDP initiated designation of the Dunham, Carrigan & Hayden Building as a San Francisco landmark on March 5, 2014.

A project has been proposed for the Dunham, Carrigan & Hayden Building that would entail converting 49,364 square feet of PDR space on the upper two floors into office use. Conversion of Landmark Buildings in PDR-1-D Districts to office use is controlled by Section 210.3B of the San Francisco Planning Code, and requires submission of a targeted Historic Structure Report that meets the criteria laid out in that section. WJE has been engaged to prepare this targeted Historic Structure Report to meet these criteria.

Overall Significance

The Dunham, Carrigan & Hayden Building was constructed by John Rapp, a brewer, who had accumulated a number of real estate investments throughout San Francisco and the wider Bay Area. His bottling plant was located on a portion of the site until it was torn down sometime around 1910. Rapp acquired ownership of the five parcels that underlie the building sometime around 1912. In 1915, Rapp hired architect Leo J. Devlin to design the building that now occupies the site, and agreed to lease it to the Dunham, Carrigan & Hayden Company as a warehouse, offices and showroom. The exterior appearance and configuration of the Dunham, Carrigan & Hayden Building has remained essentially unchanged since its construction in 1915.

The Dunham, Carrigan & Hayden Building was evaluated for potential San Francisco landmark designation in the Landmark Designation Report. This report, attached as Appendix B, contains a more complete history of the building, including a biography of the architect, a construction history of the building, a description of the building type, and histories of the Wholesale District and the Dunham, Carrigan & Hayden Company.

The report also contains an assessment of the significance based on the criteria for designation established by the National Register of Historic Places, and concludes that the building meets these criteria based on its association with events that have made a significant contribution to the broad patterns of history, and that it embodies distinctive characteristics of a type, period, or method of construction, or that represent a significant and distinguishable entity whose components may lack individual distinction.

The Landmark Designation Report established the period of significance for the Dunham, Carrigan & Hayden Building as dating from 1915, the date of its construction, to 1967, the end of the occupancy of the building by the Dunham, Carrigan & Hayden Company.

In addition, the report found the property to be historically significant on the basis that:

1. Its construction, location, methods of building, and commercial/industrial functions were strongly associated with the post-earthquake reconstruction of San Francisco.
2. It is the only remaining, and most prominent business location of the Dunham, Carrigan & Hayden Company, a business that was important in San Francisco history for decades and that contributed directly, through its products, to the Gold Rush, the post 1906 reconstruction of the city, and its overall growth to a significant metropolis of the Pacific Coast.
3. The building has noteworthy architecture and is a construction type that is characteristic of the time, location, and the historical events that produced it.
Significant Character Defining Features

All of the extant original interior and exterior elements of the building contribute to its historic character. The following lists the most significant features of the design, many of which contribute prominently to the historic character of the Dunham, Carrigan & Hayden Building:

Exterior
- Exterior cladding, including red brick walls, parg-coat ornament, and cream colored brick banding.
- Six-part wood windows with divided lights and heavy wood mullions.
- Parg-coated brick sills at upper levels.
- Wood bulkheads below ground-floor windows.
- Recessed entries at the northeast and southeast lobby entries.

Interior
- Exposed heavy timber framing and flooring.
- Exposed brick masonry walls.
- Original wood staircases at interior.

Assessment of Integrity

Assessment of integrity is based on an evaluation of the condition and state of the significant physical features which date to a property’s period of significance, taking into consideration the degree to which the individual qualities of integrity are present. The seven aspects of integrity defined in the National Register Criteria for Evaluation are location, design, setting, materials, workmanship, feeling, and association. As noted in *National Register Bulletin 15: How to Apply the National Register Criteria for Evaluation*:

- Location is the place where the historic property was constructed or the place where the historic event occurred.
- Design is the combination of elements that create the form, plan, space, structure, and style of a property.
- Setting is the physical environment of a historic property.
- Materials are the physical elements that were combined or deposited during a particular period of time and in a particular pattern or configuration to form a historic property.
- Workmanship is the physical evidence of the crafts of a particular culture or people during any given period in history or prehistory.
- Feeling is a property’s expression of the aesthetic or historic sense of a particular period of time.
- Association is the direct link between an important historic event or person and a historic property.

National Register Bulletin 15 defines integrity as “the ability of a property to convey its significance.”

The discussion below considers each of the seven aspects of integrity as they relate to the historic significance of the building. A more detailed evaluation of the integrity of the Dunham, Carrigan & Hayden Building is included in the Landmark Designation Report attached as Appendix B.

Integrity of Location

The Dunham, Carrigan & Hayden Building retains a high degree of integrity of location. The building location and the boundaries of its site are unchanged since construction was completed in 1915.
Integrity of Design

The Dunham, Carrigan & Hayden Building retains a high degree of integrity of design. There have been no significant changes to the design since its initial construction in 1915.

Integrity of Setting

The Dunham, Carrigan & Hayden Building retains a moderate degree of integrity of setting. The surrounding warehouse district integrity has been compromised by the construction of the freeway which passes along the west building frontage. Other warehouses along Henry Adams Street have been also replaced with new residential construction.

Integrity of Materials and Workmanship

The Dunham, Carrigan & Hayden Building retains a very high degree of integrity of materials and workmanship. With minor exceptions noted in the section on alterations, the original exterior materials remain intact. The building has been well maintained, and there has been only moderate deterioration of the exterior. Many original interior materials also remain intact, though the building interior has been more significantly modified over time to accommodate the current building uses.

Integrity of Feeling

The Dunham, Carrigan & Hayden Building retains a high degree of integrity of feeling. The building retains its warehouse character, and has been only moderately altered since its original construction.

Integrity of Association

The Dunham, Carrigan & Hayden Building is significant primarily for its design, and association with the Dunham, Carrigan & Hayden Company. The building retains the character of its original design, and appears largely as it did when it was the headquarters, warehouses and distribution center for the company.

Building Description

As noted previously, the Dunham, Carrigan & Hayden Building is a five story, heavy timber and brick building. The building plan is essentially a rectangle with a clipped corner at the northwest where the Division Street frontage allowed for a railroad line that historically crossed the property at this location. The building abuts the sidewalk at all frontages, with the exception of the angled frontage along Division Street. The sidewalk at the east building frontage is raised relative to the roadway, forming a loading platform along the entire frontage.
The building has a footprint of approximately 66,348 square feet with approximately 328,508 square feet in total floor area (Figure 1). It is composed of 25 structural bays in the long (north-south) direction for a length of approximately 350 feet, and 14 structural bays in the short (east-west) direction for a length of approximately 200 feet (Figure 2).
Exterior

The facade is constructed with a multi-wythe common red brick set in what appears to be a portland cement and lime mortar. The brickwork is laid out in a running bond with header courses at every sixth course. The exterior wall is topped by a corbelled brick parapet that steps out to protrude past the plane of the brick pilasters at the piers below.

The facade is characterized by regularly spaced brick pilasters separated by typical windows, doors and brick spandrels. The pilasters between each window project 4 inches from the face of the spandrel brick and the parapet brick projects roughly 4 inches from the face of the pilasters. The pilasters are decorated at the third and fifth floor levels with a stylized base and capital formed of painted cementitious parge coating.

The brickwork at the three end bays of each facade is slightly more ornamental, projecting roughly 8 inches from the face of the typical brickwork with a three-bay gabled parapet and corbeled gabled ornamental at the third-floor spandrels. The gabled parapet has accent panels of painted cementitious parge, and the fifth-floor painted parge decoration extends the full height of the adjacent windows in the three end bays. Figure 3 through Figure 5 show overall views of the facade.

The east elevation has two metal fire escapes and the other primary elevations each have one (five total). The building facade has been entirely banded at floor levels three through five with large sections of tube steel bracing that are anchored to the interior timber frame. The steel banding was added as part of a seismic strengthening project in 1998, and constitutes the most significant alteration that the building exterior has undergone.

The brickwork above windows is supported by steel lintels. Two-course accent bands of cream-colored brick are located below the windows at the fourth and fifth levels. The window sills at the upper floors are formed of rowlock brick with a painted cementitious parge on the top surface.

The upper windows are typically six-part wood windows consisting of three tall windows and three transoms, separated by heavy wood mullions, as shown in Figure 6. The overall dimensions of the windows at the third floor and above are approximately 9.5 feet wide by 8.5 feet tall. The windows typically have an outswinging casement sash located in the center and fixed sash on either side, however the positions of operable sash varies some throughout the building. The transoms are typically fixed with a few inswinging hopper sash noted on the west facade. The casement windows are hinged on either concealed butt hinges or two-bar casement hinges. The hopper windows are hinged on face mounted butt hinges. The glass appears to be a mixture of float glass and plate glass, approximately 1/8 inch thick.

First floor windows are similar but taller, exhibiting the same six-part configuration, and resting on wood bulkheads. The original bulkheads typically have vertical board cladding with circular vent holes, and a metal grille in the center (Figure 7). Other bulkheads mimic this motif to varying degrees and success, typically including more simple vertical boards without holes or a grille. These simple-style bulkheads generally appear to be newer, with some variation between individual bulkheads. Many of these simple-style bulkheads are located in openings that appear to previously have been loading doors, with steel corner guards and a steel edge guard (floor plate) remaining (Figure 8). Some of the simple-style bulkheads are in openings without evidence of former loading door use, and may be replacements for original bulkheads in these locations. Most exterior doors are more modern, typically constructed of aluminum and glass. For a more detailed description of the building exterior, please see the attached Landmark Designation Report in Appendix B.
Figure 3. Overall view of the Dunham, Carrigan & Hayden Building, facing northwest.

Figure 4. Typical masonry layout at the facade end bays. Note horizontal tube steel added in 1998 seismic strengthening project to brace the walls.

Figure 5. Typical masonry layout between facade end bays.

Figure 6. Typical window from exterior.

Figure 7. Original window bulkhead with ventilation holes and metal grille.

Figure 8. Simple-style bulkhead installed in former loading door opening with corner and edge guards.
Interior

The Dunham, Carrigan & Hayden Building interior consists of five floors, including the second floor mezzanine that is held back one structural bay from the exterior wall and covers almost the entire first floor. The floors are divided by three transverse masonry walls running the width of the building from east to west. An additional masonry wall running in the north-south direction further divides the south quadrant of the building. Openings in the masonry walls are characterized by arches, and the walls are corbelled where they meet the floors above. All other interior partitions are wood-framed, and have likely been added since the conversion of the building from warehouse to showroom use.

A concourse runs diagonally through the ground floor of the building from the northeast corner to the southwest corner, with modern metal and glass showroom storefronts along both sides (Figure 9). The main hallway of the second level follows a similar pattern diagonally through the building, with accessory rooms to the west and secondary hallways connecting to other rooms to the east. The building has several stairwells that access the upper floors and appear to be original to the building’s construction. The stairs are typically wood framed, with exposed brick walls (Figure 10).

The building interior is characterized by exposed heavy timber framing that constitutes the building’s structural system (Figure 11). Regularly spaced wood columns support wood beams running in the east-west direction. The floors are constructed of exposed 2x6 decking (Figure 12) laid on edge that spans between the beams, and 1x6 diagonal tongue and groove decking laid on top of the 2x6 subfloor.

Although the interior of the building has been altered to accommodate new uses at the first, second and third floors, the building still retains the open ceilings with exposed framing throughout. There is a café space at the northeast of the building (Figure 13), and the fourth and fifth floors are entirely open at this time (Figure 14). While there is currently no restaurant tenant, ownership is conducting market ready work to attract a new food tenant/amenity.

![Figure 9. Showroom storefront at ground floor concourse.](image9.png)

![Figure 10. Stairwell at north of building.](image10.png)
Condition Assessment

Masonry Facade

The purpose of our investigation was to gain a general understanding of the masonry components of the facade including the general construction and its overall condition, and identify any visible signs of deterioration or other conditions that could affect the performance of the facade. The investigation consisted of a visual survey of the exterior surfaces performed from ground level using binoculars, close-up surveys from the fire escapes on the north, west and south elevations, and observations at the interior brickwork at leak locations identified by the owner.

Brick and Mortar

Overall there are relatively few signs of deterioration of the brickwork. We did not observe any cracks indicative of settlement or seismic movements and we noted only a few small localized areas with efflorescence indicating water intrusion into the brickwork. There is only one section of wall with reported water leakage to the interior; above the upper level windows on the south elevation between grid lines C and F. There is also an adjacent leak at the southwest corner that is directly below a roof drain. Figure 15 through Figure 17 show the appearance of the leaks from the interior.
The overall appearance of the brickwork is rough, constructed primarily of common brick, and the mortar is not neatly tooled. The uneven layup, when viewed from the ground suggests that the pointing mortar is much more deteriorated than it actually is. Figure 18 shows an example of the rough brickwork. When the brickwork was inspected from the fire escapes the mortar was found to be in reasonable condition; generally sound and bonded to the bricks, requiring firm hand pressure to scrape the surface with a metal tool as shown in Figure 19. The exception is the parapet mortar which is generally much more deteriorated than the brickwork at the walls below.
Overall the brick requires maintenance repointing of localized deterioration. For the general wall areas we estimate a rate of 10% of the joints need spot repointing. The head joints of the window sills and the parapet brickwork requires repointing at a rate of 80 to 90%.

We also noted soiling of the brickwork. The most common form of soiling is a black organic growth that is most commonly found on the parapet brick and at a projecting band of brick along the third floor spandrel level. The brick below the windows was also found to be more soiled than at the piers. Figure 20 shows the pattern of soiling of the brickwork. Overall the north elevation had the most soiling followed by the west elevation, the east elevation, and finally the south elevation.
Parge Coatings

The top surfaces of the window sills and other ledges formed by projecting masonry are protected with a cementitious parge that provides a sloping surface on the horizontal ledges to promote drainage. The parge at window sills is about 1 inch thick where it abuts the wood window sill and tapers to roughly 1/4 inch thick at the exterior face of the brick spandrel below. Figure 21 through Figure 24 show typical examples of parged window sills. The parge was not visible from ground level but when accessed from the fire escapes we noted that more than 50% of the areas sounded were not bonded to the brick substrate, and there were many areas where the parge had been removed and the brick was painted. The parge appears to be most deteriorated on the south and west facades, the parge on the north facade appeared to be in much better condition.

![Figure 21. Overall view of parge over the brick window sill.](image1)

![Figure 22. Location where most of window sill parge has been removed. The remnant at the upper part of the photo shows the tapered thickness and that it was placed directly against the wood sill.](image2)

![Figure 23. Parge installed on projecting ledge at parapet level.](image3)

![Figure 24. Parge at the top surface of projecting ledge at the third floor is not painted and has numerous cracks.](image4)

The detailing of the parge where it abuts the wood sill is problematic because it is difficult to seal the different materials at the wood/parge joint, and this joint is vulnerable to failure; allowing water to penetrate below the parge where it can damage the wood and brick.
Window Lintels

The window units are set back roughly 8 inches from the exterior face of the brick piers and the brick spandrels above the windows are supported by steel lintels. The lintels typically consist of a visible steel plate that is riveted to concealed members above, and loose laid into the masonry wall, bearing on the brickwork at the window jambs. Figure 25 and Figure 26 show examples of window lintels.

![Figure 25. View of window lintel at upper windows.](image)

![Figure 26. Close up of a typical window. The lintel is painted white and immediately below the brick.](image)

Our binocular survey identified 22 lintels that exhibit signs of distress or displacement of the masonry that is indicative of possible corrosion at those locations. This equates to roughly 8% of the lintels, with the west elevation showing the highest percentage at 14%. The actual number of lintels with possible corrosion is likely higher given the limitations of a binocular survey. Corrosion typically occurs at the horizontal surface where the brick rests on the steel due to moisture within in the assembly that collects here. The byproduct of the corroded steel is larger in volume than the original steel. When corrosion is confined, it causes an expansive force which can result in deflection of the steel as the lintel is forced to bow downward, or upward displacement or damage to the supported brick. The observed displacements do not appear to indicate that the lintels have lost significant section at this time, but further investigation may be warranted. In a number of instances on the west elevation corrosion is occurring at the lintel bearing, causing a separation in the brickwork. Figure 27 and Figure 28 show examples of evidence of corrosion at the lintels.

![Figure 27. Window lintel with deflection consistent with corrosion.](image)

![Figure 28. Location where corrosion of window lintel in the mortar joint is displacing the brick upward.](image)
Displaced Brickwork

Three areas of displaced brickwork were noted, all occurring at the parapet level. An area of brick roughly 3 square feet in size is displaced out of plane on the west elevation at the south end of the parapet. The displacement is estimated to be less than 1 inch, but the disturbed brickwork is vulnerable to increased water infiltration and deterioration, and could eventually pose a falling hazard. This area is also adjacent to a roof drain and above one of the reported interior leaks. See Figure 29 through Figure 31 for this condition.

![Figure 29. Arrow indicates the location of the displaced brickwork occurring at the parapet level.](image1)

![Figure 30. Yellow arrow indicates the location of the displaced brickwork occurring at the parapet level.](image2)

![Figure 31. View of roof drain adjacent to displaced brick at south end of west elevation. This drain is also over the leak into the room below.](image3)

The other two locations of displaced brick have a similar appearance and occur at roughly the roof line along segments of the north and west elevations. At these locations long sections of the mortar bed joints
appear to be spreading apart in a manner consistent with corrosion of embedded metal. On the west elevation the widest displacement occurs at the anchors for the fire escape ladder but the length of the displacement is longer than would be expected for such a localized source of corrosion. Also, there is a roof drain behind the displaced brick. It is not entirely clear what is causing the joints to open; the pattern of displacement is consistent with corrosion of embedded steel but we are not aware of any steel members at these locations. We recommend performing inspection openings at these locations to better understand the cause of the displacement and to develop appropriate repair procedures. Figure 32 through Figure 34 show these areas.

Figure 32. Displaced brick at parapet level on west elevation

Figure 33. Close up of displaced brick on west elevation. Note that the window lintel below this is also showing signs of corrosion.

Figure 34. Example of wide crack and displaced brickwork on north elevation.
Fire Escapes

Metal fire escapes are located on each elevation. They are generally constructed of steel channels embedded into the brick wall and cantilevered to support the ladders, stairs, rails and deck systems that make up the assembly. The various components are interconnected via rivets. Figure 35 shows an overall view of a fire escape.

![Figure 35. Overall view of a typical fire escape.](image)

WJE accessed the fire escapes on the north, south and west elevations during the facade survey. We did not find any significant corrosion or other conditions that would compromise their as-built structural capacity. The paint coating of all fire escapes is deteriorated, and beyond its service life. Although we did not do a code analysis of the fire escapes, we did note on the east and west fire escapes (three total) that the base of the roof access ladder ends directly over the opening in the platform for the stair to the lower levels. This condition is a safety hazard where someone might step through the opening while descending the fire escape. We also noted that on the south, east and west fire escapes that the landing rails were connected to the wood window frames. These connections are not sufficient to resist the likely loads that would be imparted during an evacuation and they should be strengthened. An example of this type of rail connection is shown in Figure 36. WJE did not investigate the embedded anchorage of the fire escapes.
The purpose of this preliminary survey was to identify visible signs of deterioration or other conditions that could affect the performance and safety of the wood frame windows, and determine how many windows require replacement, repair or refurbishing. The investigation included a visual survey of the interior window surfaces performed from levels four and five and close-up surveys from the fire escape on the south elevation. In total, we observed and documented conditions at 50 windows, which is approximately 19% of all the wood frame windows on the building. Our determination of quantity of repairs, replacements, etc. given in the Recommendations section is based on extrapolation of the conditions observed at those 50 windows. Our extrapolated percentages of repairs for each elevation are based on the following estimated numbers of wood windows on each facade:

- North and northwest facade: 51 windows
- West facade: 68 windows
- South facade: 50 windows
- East facade: 97 windows
- TOTAL: 267 windows

Window Frames and Sash

The wood window frames and sash appeared to be in generally serviceable condition with a few occurrences of severe deterioration at the lower sash rails and stiles (Figure 37). Paint on the interior wood surfaces was generally in good condition, with flaking and cracking occurring at areas of deteriorated wood substrate. The exterior painted faces exhibited cracking and flaking, typical at the lower sash rails and stiles (Figure 38), and heavy cracking and flaking at the upward facing surfaces of the masonry and wood sills on the south and west facades (Figure 39). The bricks at the interior around the rough openings were generally intact, with loose bricks at a few sill locations (Figure 40).
Water Intrusion
We observed one window with clear signs of water leakage at the transom between grid lines N and P on the south facade at level four, characterized by peeling paint and staining, and attempts to mitigate the leakage (Figure 41). There were also a few localized areas with efflorescence on the interior face of the south facade, typically above the window heads (Figure 42).
Glazing Putty

The condition of the glazing putty varied from good to very poor with cracking (Figure 43) and bond failure between the putty and sash (Figure 44) in many locations. Deterioration was typically concentrated at the south-facing and west-facing lites, especially the lower lites.

Glass

Most of the glass was in good condition and appeared to be uncoated clear float or plate glass, 1/8 inch thick. A number of windows on the northwest facade had paint or solar control film applied to the glass, which was generally in poor condition, with extensive blistering or flaking (Figure 45 and Figure 46). Some lites have been repaired/replaced from the interior such that the new glass is out of plane with the adjacent lites (Figure 47).
Hardware
Latches and strikes on the casement windows were generally in good condition with some minor variation in the size and shape of the latches. The typical casement sash has only one latch on the strike side of the sash about one third of the way up from the sill. A few windows have additional handles attached to the sash stile, and some have hold-open bars at the bottom rail.

Roofing
The building’s existing roofing system, reportedly installed approximately 25 years ago, consists of a multi-ply asphalt-based membrane with a granule-surfaced asphalt-based cap sheet, foil-faced base flashings (Figure 48), and reinforced fluid-applied wall coatings (Figure 49). The roof deck, which is visible from below, appears to be constructed with dimensional lumber. The full construction of the roof assembly is not known at this time, as roof cores or test cuts were not performed as part of our survey. The main roof level is divided into five separate areas, partitioned by masonry knee-walls that extend above the roof surface. Figure 50 provides an overall roof plan with the five main roof areas identified by letters A through E. Roof area F is a penthouse roof area which was not included in our survey, as it was not accessible at the time of our site visit. Additional small roof areas for elevator machine rooms and building storage areas are indicated with “X” in Figure 50. These areas were also excluded from our survey, as they were not
accessible at the time of our site visit. The following is a summary of our general observations, and specific conditions noted at Roof areas A through E.

![Figure 48. Example of foil-faced base flashing.](image1)

![Figure 49. Example of fluid-applied wall coatings](image2)

![Figure 50. Roof Plan with roof areas identified](image3)

General

A parapet wall at the exterior perimeter of the main roof is braced by structural steel elements, presumably from a previous seismic strengthening effort. These steel elements are fastened to the top of the parapet wall (Figure 51) and connected to the roof deck with diagonal steel angles, which are set into pitch pockets capped with lead sheets (Figure 52). The configuration of the steel elements at the top of the parapet creates a condition that may cause water to pond, as indicated in Figure 51; which could lead to the advanced degradation of the underlying waterproofing materials. Additionally, the diagonal steel angles, and their associated connections, exhibited signs of corrosion (Figure 53), which, if left untreated, may lead to section loss of the steel elements and a decrease in their structural capacity.

The low-slope roof is constructed with a ridge running in the north-south direction to provide slope towards drains along the east and west sides of the roof. The drains are typically 4.5 inches in diameter and are set in 12-inch deep, 16-inch square sump pits with overflow scuppers through the adjacent masonry parapet
wall (Figure 54). There are a total of six existing drains, three along each roof edge, some of which service two roof areas.

![Figure 51. Steel elements at top of parapet wall create potential area (red outline) for ponding water.](image)

![Figure 52. Steel angle parapet braces with pitch pocket and leaded sheet metal cap.](image)

![Figure 53. Corrosion at steel parapet brace. Also note, the poorly adhered parapet wall coating.](image)

![Figure 54. Primary roof drain set in sump pit, with adjacent overflow scupper (arrow).](image)

There are a number of skylights spread across multiple areas of the roof. Some skylights appear to have been replaced with pre-fabricated acrylic dome units (Figure 55), while others remain as glass set in steel frames (Figure 56), which are potentially original to the building. The acrylic units generally appear to be in good condition, with no reports or observed signs of water infiltration. The steel framed units have undergone multiple repair attempts with sealant and showed various signs of distress, including cracked lites (Figure 57), failed/deteriorated sealants at glass-to-metal interfaces (Figure 58), failed/peeling paint coatings with resulting corrosion of the underlying steel (Figure 57 and Figure 58), and some signs of water infiltration to the interior (Figure 59).
The masonry knee walls that divide the roof areas are coated with a reinforced fluid-applied material (Figure 60). This material has become brittle and is beginning to fail, as evidenced by cracking and exposed
reinforcing mesh (Figure 61). The integrity of this coating is critical to maintaining a weatherproof roof assembly and avoiding potential water infiltration to the interior.

![Figure 60. Fluid-applied coating at masonry knee wall.](image1)

![Figure 61. Deteriorated/damaged coating at masonry knee wall.](image2)

Roof Area A
The roof membrane at this area is in fair condition. Widespread alligator cracking, which is a sign of material degradation typically caused by exposure to ultraviolet (UV) radiation, was observed on the surface of the cap sheet (Figure 62). Signs of ponding water directly above a reported leak location were observed near the drain at the southwest corner of this roof area. Ponding water can contribute to the advanced deterioration of the roof membrane. Additionally, there are steel framed equipment supports with failed paint coatings that are beginning to corrode (Figure 63).

![Figure 62. Alligator cracking at surface of roof area A.](image3)

![Figure 63. Failed paint coating and corrosion of steel equipment supports at roof area A.](image4)

Roof Area B
The membrane at this roof area appears to be more recently replaced than other roof areas, and is in better condition, with limited signs of distress or deterioration (Figure 64). The walkpads at this roof area were in poor condition, with large blisters and corners which were curling up from the roof surface.
Roof Area C
The membrane at this roof area was in fair condition and showed similar signs of distress as roof area A. In select locations, the reinforcing scrim embedded within the membrane was exposed (Figure 65). This type of wear and deterioration indicates that the materials may be approaching the end of their useful service life. Additionally, at the building storage room, the door was severely deteriorated and did not close properly (Figure 66). There are also abandoned mechanical curbs at two locations of this roof area (Figure 67).

Figure 64. Condition of surface at roof area B.

Figure 65. Exposed reinforcing scrim at roof area C.

Figure 66. Deterioration at building storage door at roof area C. Note the door did not appear to close properly.
Roof Area D
The roof membrane at this area showed minimal signs of distress or deterioration, similar to roof area B. There is a large steel structure within this roof area that supports antennae and other equipment (Figure 68). The paint coating on this structure has failed and there is widespread corrosion of the structural steel elements (Figure 69).

Roof Area E
The membrane at this roof area showed significant signs of distress and deterioration, similar to roof areas A and C. Additional signs of localized damage and distress to the roof membrane (Figure 70) and base flashings (Figure 71) were also noted.
Structure

General
The purpose of our structural inspection was to assess the overall condition of the structural components and identify decay or other types of deterioration or damage to the existing structure. The inspection focused on areas most likely to be damaged or deteriorated such as framing below the roof, parapet bracing and framing in the crawl space areas. The inspection was not intended to be exhaustive or to assess the adequacy of the existing structure or design relative to the building code or other standards.

Since there have not been any substantial seismic or wind events since the strengthening work was installed in 1998, nor any other distress reported by the building maintenance staff, the investigation focused on locations most likely to experience decay or deterioration from exposure to moisture. The following general locations were observed:

1. Roof framing and upper level brick.
2. Parapet bracing.
3. Steel equipment tower at roof.
4. Crawl space at south end of building.
5. Exterior brick.

Structural System
The structural systems of the building are as follows:

- **Gravity Load Resisting System**
The gravity load resisting system is composed of solid wood decking at the floor and roof planes supported by timber beams that span to timber columns supported on concrete piers. The roof deck is composed of 3x tongue and groove planks. The floors are constructed with 2x6 boards set on edge, inter-nailed to form a solid wood floor, and finished with diagonal board sheathing. The roof and floor beams are heavy timber of varying sizes with a typical span of roughly 14 feet in each direction. The beams are pocketed into the brickwork at the perimeter walls and are supported by wood capitals at the interior columns. The columns vary in size from roughly 14 inches square at the foundation level to 8 inches square on the upper floor. The columns are supported by individual concrete piers at the interior, and continuous concrete footings at the perimeter and below interior brick walls.
Lateral Load Resisting System
Lateral wind and seismic loads are primarily resisted by the interior and exterior brick masonry walls acting in conjunction with the floor and roof framing which act as diaphragms. The vertical components of the lateral system are the brick walls, as well as a steel braced frame located on line G. The diaphragms consist of the solid wood floor decking, roof decking and the associated floor and roof framing. A seismic strengthening project completed in 1998 added drag struts and ties to better connect the floor & roof diaphragms to the masonry walls and the steel braced frame (Figure 72 and Figure 73). Additional ties were added at the floor levels to brace the brick walls against out-of-plane displacement. The added strengthening typically consists of steel plates, angles and tube sections tying the original wood framing together using bolted connections. The brick parapets were braced at an earlier date using a combination of steel angles and tube steel, but drawings were not available for this work.

Roof Framing and Upper Level Brick
The area of the upper floor from grid line 8 to 26 was unoccupied and unfinished with the roof sheathing, framing and brick walls exposed at the time of our survey. Figure 74 through Figure 77 show the overall appearance. The area was visually inspected and the following conditions noted:

- Several previously unreported areas of efflorescence were noted on the brick wall immediately below the roof deck at north end of building. Figure 78 shows a typical example.
- Minor decay of the roof decking and minor rust staining of a metal framing connector was noted at one location on the east wall next to the roof drain at grid Q-18. The metal component has not lost section. Figure 79 and Figure 80 show this area.
- There was no noted cracking of exposed brickwork at the interior face of the exterior and interior walls.
- At the south wall, immediately below the roof deck there is relatively heavy efflorescence and reported water leakage. None of the adjacent steel framing was noticeably corroded. Figure 81 shows a typical example.
- None of the metal framing on the perimeter walls was noted to be corroded.
Figure 74. Overall appearance of upper floor areas inspected.

Figure 75. Typical view of interior brick wall on upper floor.

Figure 76. View of roof decking exposed at a skylight.

Figure 77. Typical view of steel framing added to tie brick walls to the roof framing.
The Dunham, Carrigan & Hayden Building
Targeted Historic Structure Report
May 23, 2019
Page 31

Figure 78. Area of efflorescence on interior brickwork at north end of building. Several other smaller areas were noted on this wall.

Figure 79. View of water stains and wood decay at the roof drain at grid line Q-18.

Figure 80. Close up of water stain and decayed wood at the roof drain at grid line Q-18.

Figure 81. Example of efflorescence on south brick wall below the roof level.

Parapet Bracing:
The masonry parapet is braced to the roof deck with steel framing which is typically painted. There are also locations where the brick parapet is low, with metal rails embedded into the top of the parapet. The roof membrane extends up onto the inside face of the brick parapet so we could not directly observe the condition of the brickwork. The steel bracing was inspected visually at all locations. The paint coating appears to be
nearing the end of its service life, evidenced by peeling paint, and minor rust staining is beginning to appear at a number of locations. None of the observed corrosion is structurally significant. Figure 82 through Figure 86 show typical examples of the conditions noted.

Figure 82. Typical parapet bracing configuration.

Figure 83. Typical bracing at tall parapet.

Figure 84. View of metal rails embedded into top of parapet.

Figure 85. Failed paint and corrosion of steel angle.
Steel Roof Tower
The steel framed equipment tower (Figure 87) at grid lines G-H-16-17 appears to be quite old based on the riveted construction, and may have been subsequently strengthened using welded angles and gusset plates. The steel members were once coated but the coating has failed and is entirely missing in a number of locations.
The steel framing was visually inspected from the roof level. The coating appears to have failed some time ago and the exposed steel is corroding. The corrosion is not yet severe but we observed one location where the steel has lost section from corrosion at the faying surface between a since-removed member and the existing beam. Figure 88 and Figure 89 show typical examples.

![Figure 88. The coating on the steel has long since failed and the steel is corroding.](image1)

![Figure 89. Location where the faying surface between a removed member and the remaining steel has corroded and lost section.](image2)

Crawl Space

The first floor is located over a crawl space of varying height. The crawl space is reportedly on the order of 1.5 feet tall at the north end of the building and roughly 4 feet tall at the south end. Maintenance personnel reported that they were not aware of any issues with the crawl spaces except for the south end of the building where there is standing water during the rainy season. Within the crawl space the first floor framing, wood column bases, concrete pier footings and brick wall foundations are visible. Figure 90 and Figure 91 show the general appearance of the crawl space. WJE checked three crawl space locations:

- Area 1: bounded by grids lines 17-18-H-K
- Area 2: bounded by grid lines 1-8-A-G
- Area 3: bounded by grid lines 1-8-G-Q
Area 1 is toward the middle of the building and roughly 2 feet tall. At the time of our inspection the soil was damp but not muddy, and the area did not feel noticeably humid. There was no visible corrosion or decay noted on the steel and wood components; and we did not see efflorescence on the exposed brickwork or concrete.

Area 2 is at the southwest corner of the building. This area reportedly has standing water during the winter months and there is a sump pump and exhaust fan installed to address the moisture. The water reportedly comes in from the sidewalk area on the south side of the building. The soil was slightly muddy and the exhaust fan was running at the time of our field survey. We also noted an area of the foundation wall at the southwest corner of the building that was wet. There are several steel beams that are located parallel to and over the south foundation wall that have a significant build-up of pack rust on the steel bearing plates as shown in Figure 92 and Figure 93. There was no significant corrosion noted at other steel framing in this crawl space area. The sidewalk slab adjacent to Area 2 appears to be relatively new with a modest slope away from the building. It appears that the slab abuts the brick walls and the joint between the sidewalk and brick is not sealed.
Area 3 is at the southeast corner of the building. This area reportedly also has standing water during the rainy season but less frequently and less severely than the southwest area. This area does not have an exhaust fan or sump pump. At the time of our field survey the soil was moist but not muddy and the humidity felt slightly higher than on the first floor. We did not observe areas of decay to the wood framing. We did notice that the steel beams along the south wall have the beginning stages of corrosion and at the bearing plates the pack rust is as thick as 1/2 inch.

Exterior Brick

All exterior brick facades were inspected in June of 2017 from street level using binoculars and the findings from that survey are discussed in detail above in the Masonry Facade section. The survey did not reveal any diagonal or x-pattern cracking indicative of settlement or seismic damage. Corrosion was noted at a number of steel lintels but there is no indication of significant loss of section. Recommendations for repair of the exterior brick masonry are presented in the Masonry Facade section below.

RECOMMENDATIONS FOR TREATMENT

Guidelines and Standards for Treatment

Selecting the Appropriate Treatment Standards

The U.S. National Park Service has developed definitions for the four major treatments that may be applied to historic structures: preservation, rehabilitation, restoration, and reconstruction. The four definitions are as follows:

- **Preservation** is defined as the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. New
exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a preservation project.

Rehabilitation is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values.

Restoration is defined as the act or process of accurately depicting the form, features, and character of a property as it appeared at a particular period of time by means of the removal of features from other periods in its history and reconstruction of missing features from the restoration period. The limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a restoration project.

Reconstruction is defined as the act or process of depicting, by means of new construction, the form, features, and detailing of a non-surviving site, landscape, building, structure, or object for the purpose of replicating its appearance at a specific period of time and in its historic location.

The appropriate treatment for the Dunham, Carrigan & Hayden Building is determined by the existing integrity, alterations that have taken place in the past, and the future use selected for the building. The Dunham, Carrigan & Hayden Building was originally constructed as a warehouse and distribution center, and is now used mainly as showrooms. While changes to the building have not been extensive, especially on the exterior, many alterations have been made to the interior spaces to accommodate the new uses. In addition, the proposed project would change the existing uses on the fourth and fifth floors to office use. Given the historic significance of the building, that the building has already been adapted to new uses, that there are no plans to return the building to its original use and configuration, and that the proposed adaptation is for a compatible reuse; the appropriate treatment standard to be applied for any new work would be **Rehabilitation**. We have adopted that approach in making specific recommendations in the sections below.

Repair Recommendations

Masonry Façade

Priority One Repairs
Priority one repairs are intended to address safety issues or conditions that are associated with water leakage into the building. We recommend that these repairs be implemented as soon as reasonably possible.

- Repair brickwork at water leaks on south façade:
 - Repoint 100% of brickwork on west half of south parapet.
 - Repair displaced roof level brickwork on west facade at south corner parapet.
 - Remove approximately 3 square feet of brick, 2 wythes deep.
 - Salvage and clean brick for reinstallation.
 - Remove corroded metal and other damaged masonry, coordinate with roof repair work.
 - Clean corrosion from embedded steel and treat with corrosion inhibitive coating.
 - Reinstall brickwork to match original configuration and appearance.

1 *The Secretary of the Interior’s Standards for the Treatment of Historic Properties.*
• Repair displaced brickwork at west facade fire escape.
 o The underlying cause of the displacement requires further investigation. The following is the worst case scenario:
 ▪ Dismantle upper 3 feet of brickwork showing evidence of displacement, without damaging existing parapet bracing.
 ▪ Salvage and clean brick for reinstallation.
 ▪ Clean embedded steel and coat with corrosion inhibitive coating.
 ▪ Reinstall brickwork to match original configuration and appearance.

Priority Two Repairs:
Priority two repairs address conditions that are not yet severe or a safety concern, but if not addressed within the next one to five years could lead to accelerated deterioration, become significantly more expensive to repair, or become a safety issue.

• Repair corrosion at window lintels (assume 20%).
 o Clean out joint between shelf angle and brick using grinders, reciprocating saws or similar equipment. If required, remove isolated bricks to facilitate access to the steel.
 o Clean and coat steel with corrosion inhibitive coating.
 o Where corrosion appears to be extensive, remove brick as required to expose face of steel angle, clean and coat steel angle, and reinstall brick.
 o Reinstall bricks, as required, and repoint joint with mortar to match original configuration and appearance.
• Prepare and repaint steel parapet bracing.
• Repair parge on window sills and other horizontal ledges. The order of priority is south elevation, west elevation, east elevation, and north elevation.
 o Sound all areas of existing parge to identify delaminated areas.
 o Remove delaminated parge.
 o Remove paint from top surface of brick where parge was previously removed.
 o Repoint exposed mortar joints where parge is removed.
 o Install new parge to match profile of original installation.
 o Seal joint between parge and window sill.
 o Paint parge and vertical face of sill.

Priority Three Repairs:
Priority three repairs address routine maintenance of the various facade components. These repairs are recommended to be performed within the next 10 years. The order of priority is south elevation, west elevation, east elevation, and north elevation.

• Repoint mortar joints:
 o Repoint 100% of joints above upper windows.
 o Repoint 100% of head joints of window sills.
 o Repoint miscellaneous joints with voids, cracks, deep erosion or other deterioration; allow for repointing 10% of joints.
• Repaint 100% of parged areas of facade.
• Clean masonry:
• Clean all facade areas with low pressure water rinse and hand scrubbing. Additional cleaning measure may be considered using the gentlest means possible to achieve a reasonable result.
 o Clean localized areas of efflorescence by hand brushing and water wash.
 o Clean localized areas of organic growth using mild biocide cleaner.
• Repaint exposed metal components such as lintels, horizontal metal bracing and anchor plates.

Fire Escapes

Priority One Repairs
Priority one repairs are intended to address safety issues. We recommend that these repairs be implemented as soon as reasonably possible.

• Perform a complete evaluation of the fire escapes for safety and structural capacity.
• Relocate access ladder between the roof level and the upper landing on east and west facades to a location over a “solid” area of landing.
• Strengthen rail connections to the building currently anchored in wood trim by adding bent plates and epoxy anchors to connect rail to brick, typical at all landings on east, south and west elevations.

Priority Two Repairs:
Priority two repairs address conditions that are not yet severe or a safety concern, but if not addressed within the next one to five years could lead to accelerated deterioration, become significantly more expensive to repair, or become a safety issue.

• Prepare and paint all metal elements of the fire escapes on all elevations.

Windows

Priority One Repairs
Priority one repairs consists of work to address safety issues or conditions that are associated with water leakage into the building. We recommend that these repairs be implemented as soon as reasonably possible.

• Replace heavily deteriorated wood at sash stiles and rails. Full sash replacement is recommended for this condition, which affects the following estimated percentages of sash:
 o North and northwest facade: 2%
 o West facade: 4%
 o South facade: 7%
 o East facade: 7%
• Replace broken or cracked glass. This condition affects the following estimated percentages of lites:
 o North and northwest facade: 1%
 o West facade: 1%
 o South facade: 3%
 o East facade: 1%

Priority Two Repairs:
Priority two repairs address conditions that are not yet severe or a safety concern, but if not addressed within the next one to five years could become significantly more expensive to repair, or become a safety issue.
• Repair or replace moderately deteriorated wood at sash rails and stiles. This condition affects the following estimated percentages of total linear feet of sash rails and stiles:
 o North and northwest facade: 0%
 o West facade: 5%
 o South facade: 2%
 o East facade: 5%
• Replace glazing putty where cracked or failing. This condition affects the following estimated percentages of lites:
 o North and northwest facade: 0%
 o West facade: 2%
 o South facade: 31%
 o East facade: 50%
• Repair gaps at sash joints between rails and stiles where connection is loose by removing and rebuilding window sash; repair gaps at stable connections with epoxy patching compound. This condition exists, on average, once per window across the entire building.

Priority Three Repairs:
Priority three repairs address routine maintenance of facade components that is recommended to be performed within the next 10 years.

• Scrape and repaint exterior wood at window sills, frames and sashes at 100% of wood windows.
• Remove applied solar control films from glass. This condition affects the following estimated percentages of lites:
 o North and northwest facade: 39%
 o West facade: 0%
 o South facade: 9%
 o East facade: 1%
• Remove paint from glass. This condition affects the following estimated percentages of lites:
 o North and northwest facade: 16%
 o West facade: 8%
 o South facade: 0%
 o East facade: 0%
• Install window latch hardware where missing or damaged. This condition affects the following estimated percentages of windows:
 o North and northwest facade: 17%
 o West facade: 29%
 o South facade: 64%
 o East facade: 31%
• Remove non-standard glass and replace to match typical lites. This condition affects the following estimated percentages of lites:
 o North and northwest facade: 3%
 o West facade: 0%
 o South facade: 0%
 o East facade: 0%
Roofing

Priority One Repairs:
Priority one repairs consists of work to address safety issues or conditions that are associated with water leakage into the building. There were no conditions identified in our survey that required immediate attention.

Priority Two Repairs:
Priority two repairs address conditions that are not yet severe or a safety concern, but if not addressed within the next one to five years could become significantly more expensive to repair, or become a safety issue. Within the next 3 years we recommend the following:

- Remove and replace the roofing system at roof areas A, C, and E:
 - Remove all existing roofing materials, including roof drains, base flashings, and associated sheet metal counter flashings to expose the underlying wood deck.
 - Survey the deck and repair or replace all identified damage or deteriorated materials.
 - Remove all existing equipment and curbs that are no longer in use.
 - Install a new roofing system, possibly a multi-ply modified bituminous membrane with a granule-surfaced cap sheet, tapered insulation, and appropriate flashings as required.

- Scrape and Paint Steel Elements:
 - Remove all loose paint coatings and corrosion product from the structural steel elements at equipment supports, the antenna tower, and parapet bracing.
 - Severely corroded areas should be reviewed by a structural engineer to determine if any structural repairs are necessary.
 - Install a high performance corrosion inhibiting coating to mitigate further corrosion and protect the steel elements.

- Perimeter Parapet Walls:
 - The structural steel that has been installed at the perimeter parapet walls causes water to pond on top of the parapet wall. The substrate in these areas should be modified to slope, or a sheet metal coping cap should be installed over the top of the parapet to protect the top of the parapet and to prevent water from ponding.
 - Remove and replace the existing coating at the parapet wall with a new elastomeric waterproofing coating.

- Brick Knee Walls:
 - The waterproof coating currently installed on the knee walls that separate the roof areas has likely reached the end of its useful service life. This coating should be removed and the condition of the underlying masonry reviewed and repaired as necessary.
 - Install a new fluid-applied, fully reinforced waterproofing membrane that can be integrated with a new roofing membrane adjacent to the walls.

- Skylight Repairs:
 - The existing steel framed skylights are in varying states of disrepair and require a restoration effort to mitigate deterioration and water intrusion issues.
 - Remove all exposed paint coatings and sealants.
 - Replace broken glass lites with laminated safety glass.
 - Repair damaged steel frames.
 - Install new wet seal at glass-to-metal interfaces.
 - Apply a high performance paint coating at the steel frame elements.
If the steel elements are too deteriorated to be reasonably repaired, the skylights should be replaced with aluminum skylights that replicate the original skylight configuration.

- **Skylight Fall Protection:**
 - New code provisions may require fall protection around both the existing glass and acrylic skylights. These requirements should be reviewed, and potential fall protection (likely railings) should be installed around each skylight. This work would likely be performed during the recommended roof replacement efforts.

Priority Three Repairs:
Priority three repairs address routine maintenance of roofing components that is recommended to be performed within the next 5 to 10 years. Within the next 8 years we recommend the following:

- Remove and replace the roofing system at roof areas B and D:
 - Remove all existing roofing materials, including roof drains, base flashings, and associated sheet metal counter flashings to expose the underlying wood deck.
 - Survey the deck and repair or replace all identified damage or deteriorated materials.
 - Remove all existing equipment and curbs that are no longer in use.
 - Install a new roofing system, possibly a multi-ply modified bituminous membrane with a granule-surfaced cap sheet, tapered insulation, and appropriate flashings as required.

Structure

Priority One Repairs
Priority one repairs are intended to address safety issues or conditions that are associated with water leakage into the building. The structural system exhibited no serious deficiencies that require immediate attention.

Priority Two Repairs
Priority two repairs address conditions that are not yet severe or a safety concern, but if not addressed within the next one to five years could become significantly more expensive to repair, or become a safety issue.

- **Roof Framing:**
 - Remove and replace decayed wood decking at three roof drain locations at: grid lines A-1, A-13, and Q-18 (see recommendations under Roofing section).
- **Steel Beams in Crawl Space:**
 - Inspect all steel beams along south wall.
 - Remove corrosion buildup where found.
 - Prepare and paint all beams at this location with new aliphatic urethane coating.
- **Waterproofing in Crawl Space:** As noted in the conditions assessment, there are issues with standing water at the south end of the crawl space. The moisture appears to be coming through the wall at the level of the sidewalk. There are preventative and mitigation measures that could be taken to mitigate or manage the water in this area. Some of these measures could be undertaken in an incremental fashion, as they are likely to provide varying levels of performance that may mitigate, but not entirely stop leakage in this area. The following possible repair strategies are presented from least-invasive to most-invasive.
 - Seal the joint between the sidewalk and the building foundation wall.
 - Perform through-wall waterproofing grout injection from the crawl space to attempt to create a continuous curtain of cured waterproofing grout at the exterior face of the masonry wall to mitigate leakage through the wall.
o Install a concrete rat slab in this area of the crawl space to collect water that leaks through the masonry wall. Slope the slab to provide more effective drainage to the sump pumps to remove the water from the crawl space more quickly.

o Install a positive-side waterproofing membrane at the exterior side of the masonry wall beneath the sidewalk. This would require removal of the sidewalk adjacent to the building, excavation beneath the sidewalk, installation of waterproofing, and backfilling and repair of the sidewalk.

Project Progress

Since the completion of our site investigation and condition assessment, some of the repair recommendations described above have reportedly been undertaken, or are currently being planned for the project. The following section summarizes the status of each repair recommendation.

Work Recently Completed
- Priority One Fire Escape Repairs

Work Currently In-Progress or Planned within the Next 12 Months
- Priority One and Two Masonry Repairs
- Priority Two Fire Escape Repairs
- Priority One and Two Window Repairs
- Priority One, Two and Three Roofing Repairs
- Priority One Structural Repairs
- Priority Two Roof (roof framing only)

Work Planned as Future Maintenance within the Next 5-7 Years
- Priority Three Masonry Repairs
- Priority Three Window Repairs
- Priority Two Structural Repairs (other than roof framing)
APPENDIX A: PROPOSED PROJECT
Project Summary

The proposed improvements to the Dunham, Carrigan & Hayden Building (currently housing the San Francisco Design Center), recently landmarked and located in the San Francisco Design District (known as Showplace Square), comprises exterior and interior core and shell remodel of the five-story brick and timber building. Additionally, extensive site improvements include new accessible sidewalks around all four sides of the building and landscaped pedestrian plaza along the properties northwestern boundary.

The first, second and third floors of the building are almost entirely occupied by showroom tenants, with the fourth and fifth floors of the building to be occupied by new PDR tenant. The proposed project is described in architectural plans prepared by RMW architecture + interiors and complemented by the team of design and engineering consultants.

The scope of work includes:

- New HVAC, Electrical power (includes new transformer) and Telco infrastructure to meet the demands of future modern tenants requirements for the fourth and fifth floor
- Full modernization of two existing passenger elevators to increase speed and efficiency
- Full modernization of the Freight elevator
- Renovation and expansion of the existing men’s and women’s north core restroom and addition of new men’s and women’s south core restrooms on the fourth and fifth floors
- Renovation of the building ground floor north entrance lobby/reception area, including new architectural stair to second floor
- Renovation and expansion of the existing common area men’s and women’s ground floor restroom and addition of two new ADA accessible multi-gender restrooms on the ground floor near the north entrance lobby restrooms
- Base building accommodations for future ground floor restaurant adjacent to north entrance lobby includes new MEP stub-outs and kitchen shell space
- Demolition of the non-historic windows and storefront and replacement with new windows to replicate the historic window materials and profiles
- Historic facade cosmetic and weather proofing repair includes repointing of brick, new coping and flashings
- Comprehensive signage program
- Entire building re-roof
- New ADA accessible concrete and specialty paving sidewalks around the entire building perimeter
- New street trees and landscape at sidewalks all around the building perimeter
- New exterior public accessible landscaped plaza at building northern property
- New exterior site and security lighting and architectural building facade lighting

Project Ability to Enhance Feasibility of Preservation

For over forty years the San Francisco Design Center has functioned as one of the largest collection of design showrooms on the West Coast and in the country. Large showroom tenants
are minimally impactful on a building with few requirements relating to employee/customer headcount, heating/cooling, loading and specialty equipment. With an average person load of between 1-2 employees for every 1,000 square feet (1-2:1,000), showroom use has some of the smallest density with many PDR uses north of 3:1,000 and office use ranging from 3-7:1,000.

This underutilization has allowed the San Francisco Design Center to maintain dated and obsolete systems and the space demands did not require the building to modernize. As showrooms have consolidated they have increased density and similarly increased demands on the building and systems. Typical PDR tenants require greater use of building power, cooling, vertical transports and loading. In our marketing efforts to the PDR tenancy we have been stymied by the building’s inability to meet modern PDR requirements and are looking to at large capital reinvestment to modernize the San Francisco Design Center.

Our modernization efforts will take a threefold approach to (1) meet the market requirements of modern PDR or office buildings, (2) reinvest in the building to keep it competitive and avoid functional obsolescence, and (3) maintain and protect the building’s historic elements.

Building System Upgrades

<table>
<thead>
<tr>
<th></th>
<th>Existing Showroom User Requirement</th>
<th>Typical PDR User</th>
<th>High End of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Required</td>
<td>3.5 watts/SF</td>
<td>5-10 watts/SF</td>
<td>12 watts/SF</td>
</tr>
<tr>
<td>Heating & Cooling</td>
<td>200 sf/Ton</td>
<td>300-400 sf/Ton</td>
<td>450 sf/Ton</td>
</tr>
<tr>
<td>Restroom Counts</td>
<td>24/floor</td>
<td>36/floor</td>
<td>42/floor</td>
</tr>
<tr>
<td>Freight Elevator</td>
<td>One Primary</td>
<td>2 given floor size</td>
<td>N/A</td>
</tr>
<tr>
<td>Loading</td>
<td>One dock, one freight</td>
<td>Multiple docks, truck courts, freight</td>
<td>Exclusive dock/freight per tenant</td>
</tr>
</tbody>
</table>

The upgrades above require a full-scale overhaul of the buildings systems. The transformers providing power to the building are vintage 1983 and while they have been properly maintained, they are beyond their useful life and need to be replaced. We currently have 43 rooftop HVAC units providing air. These typically have a 25 year life and all but 6 units are greater than 25 years old. The fact that the transformers and HVAC are still functioning is a testament to the maintenance and care given to the building and its systems but proper maintenance cannot extend service life indefinitely.

The building’s restroom counts and freight forwarding (elevator and loading) are also insufficient for a typical PDR or office headcount and conducive only to minimal showroom use. Current Building code requires the addition of a new restroom core on every floor to accommodate additional users. The freight elevators date back to the 1960s and are well maintained but replacement parts are no longer manufactured and they need to be replaced. Code upgrades also require us to enclose both freight elevator shafts.
The Dunham, Carrigan & Hayden Building
Targeted Historic Structure Report
May 23, 2019
Page 47

<table>
<thead>
<tr>
<th>Project</th>
<th>Status</th>
<th>Contractor</th>
<th>Cost</th>
<th>Timing</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Under Construction</td>
<td>McMillian</td>
<td>$2.2 M</td>
<td>9-12 months</td>
<td>Basic scope</td>
</tr>
<tr>
<td>HVAC</td>
<td>Under Construction</td>
<td>ACCO</td>
<td>$1.7 M</td>
<td>4-8 months</td>
<td>PDR Scope</td>
</tr>
<tr>
<td>Restrooms</td>
<td>Under Construction</td>
<td>CCI</td>
<td>$1.1 M</td>
<td>6-9 months</td>
<td>$300K/floor</td>
</tr>
<tr>
<td>Freights</td>
<td>Consultant</td>
<td>KONE</td>
<td>$700K</td>
<td>6-12 months</td>
<td>Retrofit/Shaft</td>
</tr>
<tr>
<td>Loading</td>
<td>Preliminary</td>
<td>TBD</td>
<td>$500K</td>
<td>6-12 months</td>
<td>Exterior/ADA</td>
</tr>
</tbody>
</table>

To cure the building’s functional obsolescence and modernize the systems, the estimated costs are $6.2 million. The electrical, HVAC and elevator costs have all been through consultant and design review and are currently under construction. The restroom and loading assessments are currently out to bid.

Landmark Preservation

On top of these costs are the costs associated with maintaining and protecting the building’s historic elements. Most of the windows in the building are original and some need to be replaced. The building’s roof is 28 years old and was installed to last 25 years. Again, the fact that the windows and roof have been made to last as long as they have is a testament to the maintenance and care devoted to the building. We have identified a local provider who can replicate the original windows in wood.

<table>
<thead>
<tr>
<th>Project</th>
<th>Status</th>
<th>Contractor</th>
<th>Cost</th>
<th>Timing</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>Consultant</td>
<td>West Coast Roof</td>
<td>$1.2 M</td>
<td>6-9 months</td>
<td>$17/foot</td>
</tr>
<tr>
<td>Windows</td>
<td>Fully Bid</td>
<td>SF Windows</td>
<td>$1.2M</td>
<td>1-3 years</td>
<td>$1,500/wnd</td>
</tr>
<tr>
<td>Tuck Pointing</td>
<td>Ongoing</td>
<td>TBD</td>
<td>$450K</td>
<td>Ongoing</td>
<td>$75K/year</td>
</tr>
</tbody>
</table>

The efforts to shore up the building enclosure and keep the weather out amount to an additional $2.85 million over the next 5 years. All of this is prior to any physical enhancements or cosmetic upgrades.

Cosmetic and Building Enhancements

In pursuit of maintaining a world class design center and insuring the building remains competitive in a modern landscape, SFDC group would like to pursue a variety of cosmetic and building enhancements. This would focus on common areas improvements, throughout the building and externally, social gathering and meeting areas, and external landscape enhancements. While the building shows well and is well-maintained, the SFDC group would like to utilize the opportunity of office allocation to reinvest in the building and bring some polish to an aging gem. The exterior approach, sidewalks, lobby and restaurant service do not do the building justice. The current project proposal will upgrade the streetscape for the entire block to the current standards of the considered SF Better Streets program, including re-landscaping of
the sidewalks with street trees. In addition, the existing gravel lot at Vermont and 7th will be converted into an outdoor green area available to the public, and an exterior coffee shop and parklet may also be added to the project. Interior plans would re-expose the building’s historic elements in the lobby: removing the paint from the original brick and timber beams to show the building’s raw elements and working to incorporate this throughout the common areas. This is still in preliminary pricing phase but estimates are as follows:

<table>
<thead>
<tr>
<th>Project</th>
<th>Status</th>
<th>Comment</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF Better Streets</td>
<td>Design Phase</td>
<td>$5/foot</td>
<td>$2 million</td>
</tr>
<tr>
<td>Lobby Renovation</td>
<td>Priced Base</td>
<td>$15/lobby, $7</td>
<td>$1.5 million</td>
</tr>
<tr>
<td>Outdoor Green Space</td>
<td>Design Phase</td>
<td>Estimate</td>
<td>$750K</td>
</tr>
<tr>
<td>Exterior Entrances</td>
<td>Design Phase</td>
<td>Estimate</td>
<td>$300K</td>
</tr>
</tbody>
</table>

The addition of the higher rent generating office space on the top two floors of the design center will fund broad-scale reinvestment across the property, benefitting all tenants and broader community. Current plans indicate a $13.8 million budget across the building for cosmetic enhancements along, which equates to over $82 per square foot on the office allocated space. PDR rents at the property are $2.50-$4 per foot per month on a net expense base, whereas Office rents in the area indicate $4-$5.50 per foot per month on a net basis. Assuming an average increase across the upper floors of $1.50 per foot per month, the payback on the initial investment is four years before factoring in lost income or downtime. The HVAC and electrical work require the space to be empty during completion which is estimated to necessitate 9 months of downtime on the space, at the PDR rents of $2.50-$4 per foot per month, this adds another $14.65 in costs to the total and extends the initial payback period to 4.75 years.
Compliance with the Secretary of the Interior's Standards

The following section evaluates the proposed building design against the Secretary of the Interior's Standards for Rehabilitation (The Standards). Each requirement from The Standards is followed by an evaluation of the compliance of the proposed project.

1. A property shall be used for its historic purpose or be placed in a new use that requires minimal change to the defining characteristics of the building and its site and environment.

 Evaluation: The project proposes use of the fourth and fifth floors as open offices. This use requires minimal changes to the character of the original warehouse.

2. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

 Evaluation: The project proposes to retain the original character defining features and materials on the interior and exterior.

3. Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.

 Evaluation: All alterations to the building will be designed in a contemporary and compatible manner, and will be distinguishable from the original building.

4. Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.

 Evaluation: This property has acquired little in the way of changes during the period of significance, and those alterations made after that period have not acquired historic significance on their own.

5. Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a property shall be preserved.

 Evaluation: The project proposes to retain all original features and materials that convey the historic character of the building.

6. Deteriorated historic features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

 Evaluation: The project proposes to repair and/or replace all damaged or deteriorated historic material in kind.
7. Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.

Evaluation: All cleaning of historic materials will be done using the gentlest possible methods to achieve the required results. It is not the intention of the project to return the building to a “like new” condition.

8. Significant archeological resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken.

Evaluation: Excavation for this project is minimal, being restricted to the area of the new plaza and sidewalks. If any archeological resources are discovered during excavation, work will be stopped, and the building owner will be contacted. The Owner will identify and document resources and develop an appropriate mitigation plan.

9. New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

Evaluation: The project proposes only minor alterations and additions. Any restoration of original features will be done in kind to match adjacent materials. Any alterations will be constructed in a manner to avoid damage to the historic materials. New features will be compatible with, and subordinate to, the character of the historic building. All new features will be distinguishable from the original building.

10. New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

Evaluation: All alterations to the building will be done in a manner to be reversible without significant damage to historic materials.
Compatibility of Office Use with PDR Tenants

The previous PDR tenants in the upper two floors of the building (and remaining tenants in the lower three floors) were not traditional industrial uses that would be associated with heavy equipment use, loud noises, noxious fumes and large amounts of materials coming and going from the building. Instead, the showrooms provide a comfortable, high-end retail and wholesale experience to their customers. Office tenants on the upper two floors of the building, with a quiet, professional environment, will be more compatible with the ongoing showroom operations on the lower three floors than other traditional PDR uses. In fact, SFDC has considered several PDR tenants for tenancy in the upper two floors in recent years, but none could be accommodated due to the significant impact that the resulting noise, vibrations and fumes would have on the showrooms in the building.

Relocation Strategy for Displaced PDR Tenants

Today, the first, second and third floors of the building are almost entirely occupied by showroom tenants. The fourth and fifth floors of the building are vacant. They were most recently occupied by some showroom tenants but the majority of these floors were used as overflow storage for showrooms located on lower floors. The fourth and fifth floors have become vacant over the past 4 years due to natural attrition and the expiration of existing leases. All tenants that wanted to remain have been provided space across the street at the SFDC’s other design showroom building at 101 Henry Adam Street.

Impact of Proposed Office Use on Surrounding Community

The conversion of the upper two floors of the property from showroom to office will have a minimal impact on the surrounding community, and the limited impact it will have will be beneficial to the existing workers and businesses in the area. The future office workers will be operating in a similar professional setting as the showroom tenants and will have similar retail needs. The greater density of workers on the upper floors will increase demand in the neighborhood for retailer services that would be beneficial for both types of tenants.

Beyond the current proposal for conversion of 49,364 square feet into office space on the upper two floors, future similar conversions will undergo environmental review, which will result in review and analysis of the existing transportation systems in the area to accommodate the increased number of workers in the building.

Finally, the streetscape improvements associated with the proposed conversion will benefit all workers and businesses in the surrounding neighborhood.
APPENDIX B: LANDMARK DESIGNATION REPORT